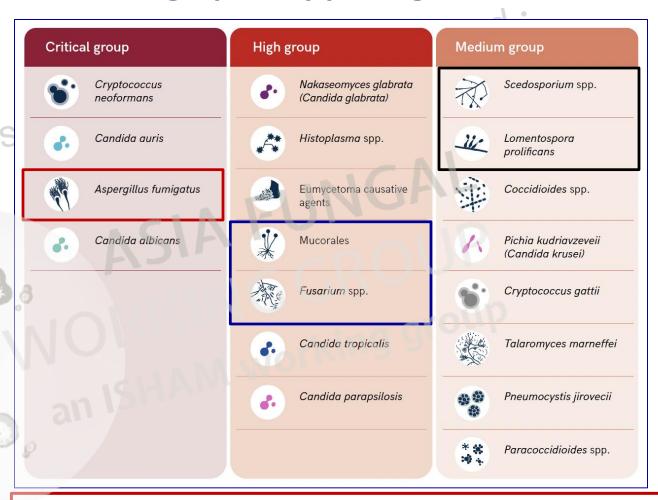


Updates in invasive mould infections

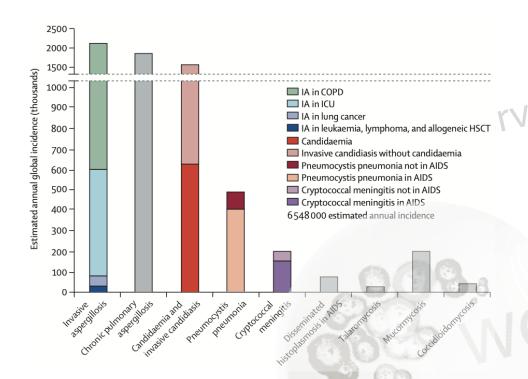
Arunaloke Chakrabarti


Director, Doodhdhari Burfani Hospital & Research Institute, Haridwar, India Immediate Past-President, International Society for Human & Animal Mycology

PP-CRB-VNM-0176

Updates

- Prevalence
- Risk factors
- Etiological agents ight res
- Diagnosis
- Management
- WHO released first Fungal
 Priority Pathogen List (FPPL) in
 2022 of 19 pathogen posing greatest
 threat to public health


WHO- fungal priority pathogens

Missing moulds which are prevalent in Asian countries

- Aspergillus favus
- Cladophialophora bantiana

Epidemiology of invasive fungal disease

Annual incidence of 6.5 million invasive fungal infections & 3.8 million deaths, of which about 2.5 million were directly attributable

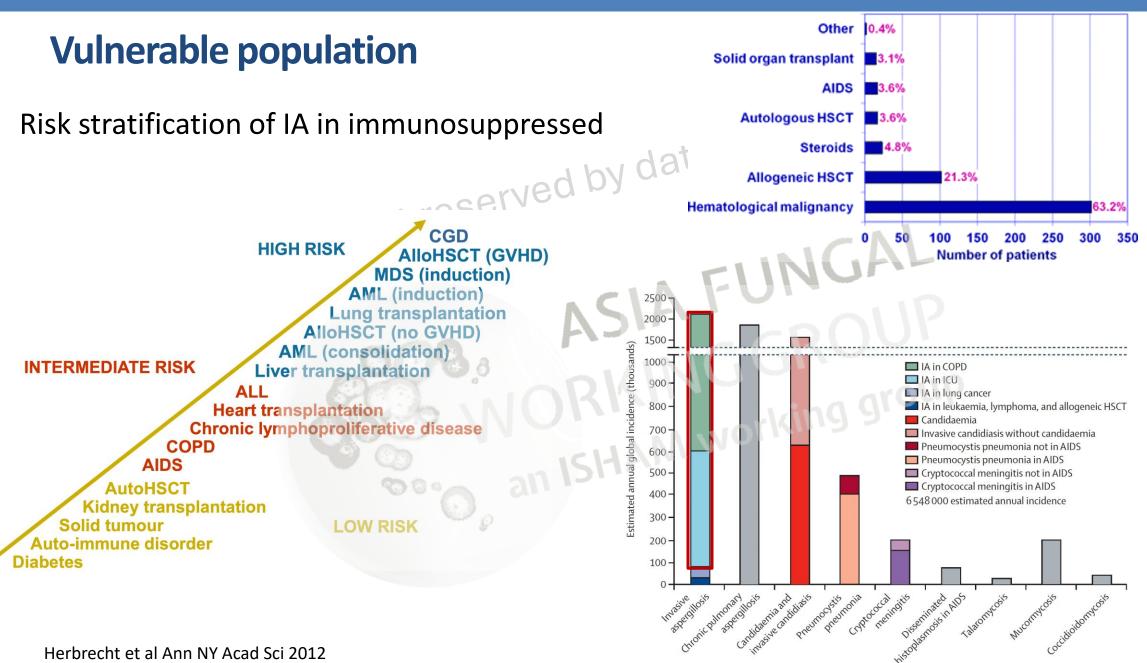
Since 1980s, Invasive mould infections rapidly evolved

- Increased prevalence
- New species emerged causing human infection
- COVID-19 impact CAPA, CAM
- Antifungal resistance one health issue
- Public health importance

Major challenges – challenge of 50%

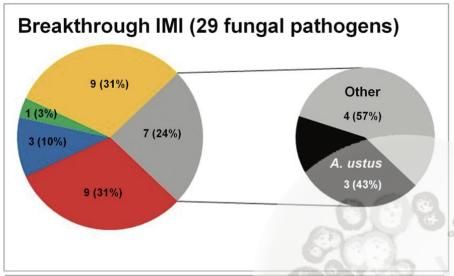
- Difficult to diagnose 50% diagnosed post-mortem
- Difficult to treat 50% mortality despite therapy
- Stewardship issue 50% inappropriate therapy

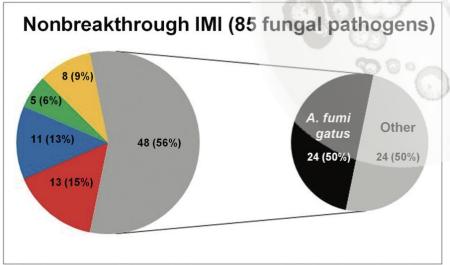
Denning DW. Lancet Infect Dis. 2024 Jan 12:S1473-3099(23)00692-8;

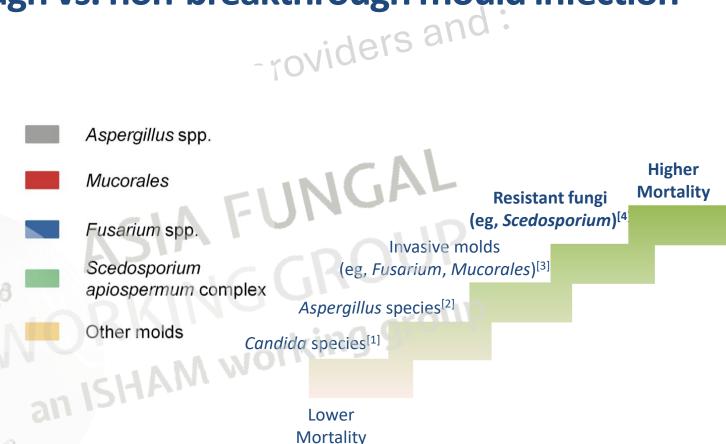

Specific challenges in developing countries in Asia

- ➤ Tropical environment where fungi easily thrive mycelial infection from high spore count in air
- Large number of susceptible population diabetics, COPD, cirrhosis etc

Very high rate of IMI in Asian countries including Indonesia & India


- 2.9 4.1% population suffer from serious fungal infection
 - **► Invasive aspergillosis –18.0-18.6/100,000**
 - > Chronic pulmonary aspergillosis − 125-142/100,000
 - ➤ Chronic fungal rhinosinusitis 109-110/100,000
 - \rightarrow Mucormycosis 0.2-14.0/100,000



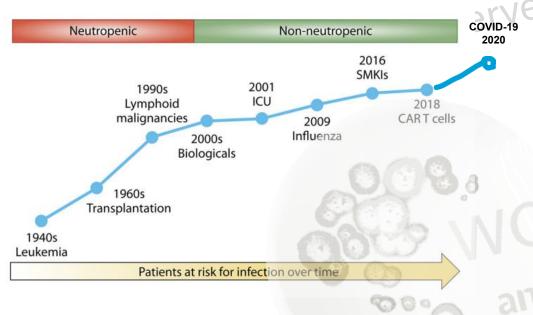

Invasive mould infections

- New risk factors
- providers and: > prolonged ICU stay, COPD, structural lung defect, chronic liver & kidney disease, ARDS
 - Influenza & COVID-19 (tocilizumab, advanced age, steroid)
 - \triangleright Immunobiologicals [TNF α blockers, Tyrosine kinase inhibitor (ibrutinib), anti-B cell inhibitors, antirejection, check-point inhibitors]
- Selection/breakthrough after prophylactic antifungal
 - > After introduction of fluconazole prophylaxis
 - *Increase in invasive mould disease (aspergillosis, mucormycosis, fusariosis & others) (Pagano et al, 2006; Nucci et al, 2013)
 - > After introduction of mould active prophylaxis (voriconazole & posa)
 - Breakthrough mould infection, mucormycosis (Auberger et al, 2012)
 - **Emergence of triazole resistant aspergillosis** (van der Linden et al, 2013)

Comparison of breakthrough vs. non-breakthrough mould infection

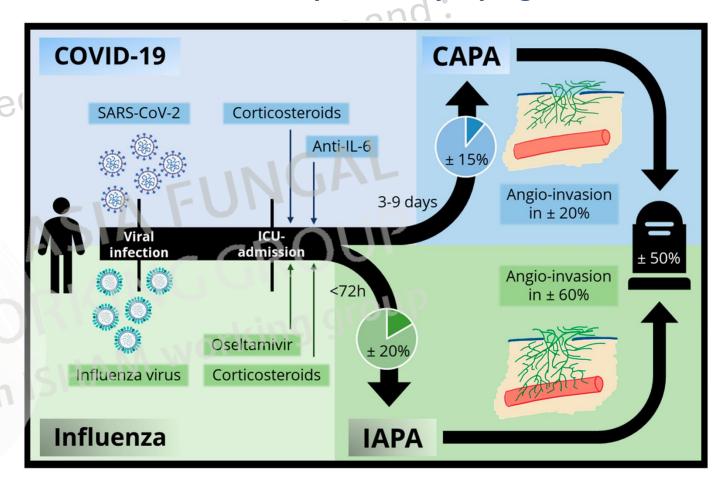
Lamoth F, et al. Clin Infect Dis 2017; 64: 1619-21; Andes. Clin Infect Dis. 2012;54:1110. Nivoix. Clin Infect Dis. 2008;47:1176. Park. Emerg Infect Dis. 2011;17:1855. Cortez. Clin Microbiol Rev. 2008;21:157.

Uncommon mould in clinical practice

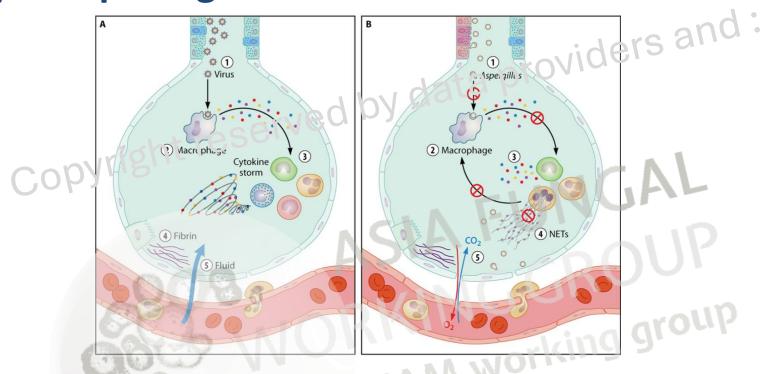

Mucormycetes	Hyalohyphomycetes	Phaeohyphomycetes	Parafungi
Rhizopus homothallicus	Scedosporium spp.	Cladophialophora bantiana	Pythium insidosum
Apophysomyces spp.	Lomentospora prolificans	Verruconis gallopava	ID
Saksenaea spp.	Fusarium spp.	Alternaria spp.) \
Rhizopus microsporus	Rasmsonia spp.	<i>Bipolaris</i> spp.	oup
Thamnostylum lucknowense	Paecilomyces spp.	Exophiala spp.	
Syncephalastrum racemosum	Acremonium spp.		
	Schizophyllum spp		

Hoenigl M, et al. Lancet Infect Dis 2021; 21: E 246-E257; Douglas AP, et al. Clin Microbiol Infect 2016; 22: 670-680; Rathi A, Chakrabarti A, et al. Cornea 2018; 37: 518-522; Chakrabarti A, et al. Med Mycol. 2016; 54: 111-11; Prakash & Chakrabarti. Microorganism 2021; 9: 523

New risk groups for aspergillosis

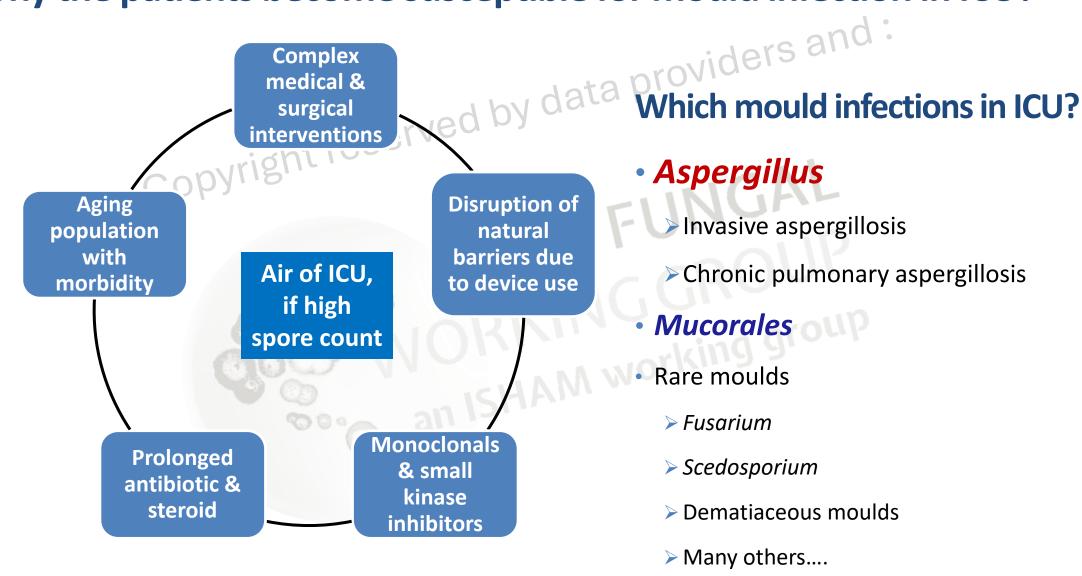

Virus associated pulmonary aspergillosis

Epidemiological trends of IA



SMKI, small-molecule kinase inhibitor; CAR T cells, chimeric antigen receptor T cells.

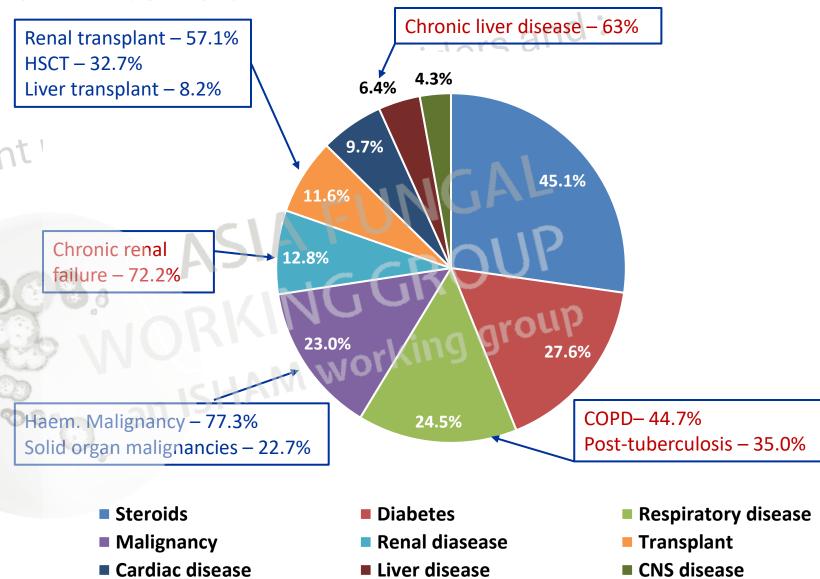
Bassetti M, et al. Intensive Care Med 2017; 43: 1225; Latge & Chamilos Clin Microbiol Rev 2020; 33: e00140-18; Meersseman W, et al. Clin Infect Dis 2007; 45: 205-16; Rudramurthy SM, et al. Indian J Med Microbiol 2016; 34: 529-32



Respiratory viral-pathogen co-infections

- (A) Entry of virus into alveolar space. (1) Virus infects airway epithelium. (2) Alveolar macrophages recognize the virus & produce cytokines. (3) Cytokines attract more immune cells (neutrophils & monocytes). (4) Damage further through the formation of fibrin & scar tissue. (5) Weakened blood vessels allow fluid to seep in & fill the lung cavities, leading to respiratory failure.
- (B) Entry of fungi into the alveolar space. (1) damaged epithelium facilitates adhesion of fungal conidia & subsequent invasion. (2) Phagocytosis, fungal killing, & cytokine production by alveolar macrophages impaired. (3) Recruitment of neutrophils also affected. (4) Loss of neutrophils compromises their cytokine production & neutrophil mediated fungal killing. (5) Fibrinous material can cause the obstruction of small airways, decreasing oxygen & carbon dioxide diffusion, leading to hypoxia

Why the patients become susceptible for mould infection in ICU?



Bassetti M, et al. Intensive Care Med 2017; 43: 1225

Mould infections in ICU – 11 centers

Indian data

- 10.1/1000 ICU admission
 - ➤ Aspergillosis 74.8%
 - ➤ Mucormycosis -23.9%
- Site of infections
 - ▶ Pulmonary 80.7%
 - > Rhino-orbito-cerebral 5.8%
 - ➤ CNS- 1.3%
 - ➤ Gastrointestinal 0.8%
 - ➤ Subcutaneous tissue -2%
 - ➤ Heart 0.3%
- A. flavus & A. fumigatus equal frequency
- Overall mortality 67.3%

Impact of invasive aspergillosis in ICUs globally Prevalence – 0.2% to 17% with mortality >80% a providers and :

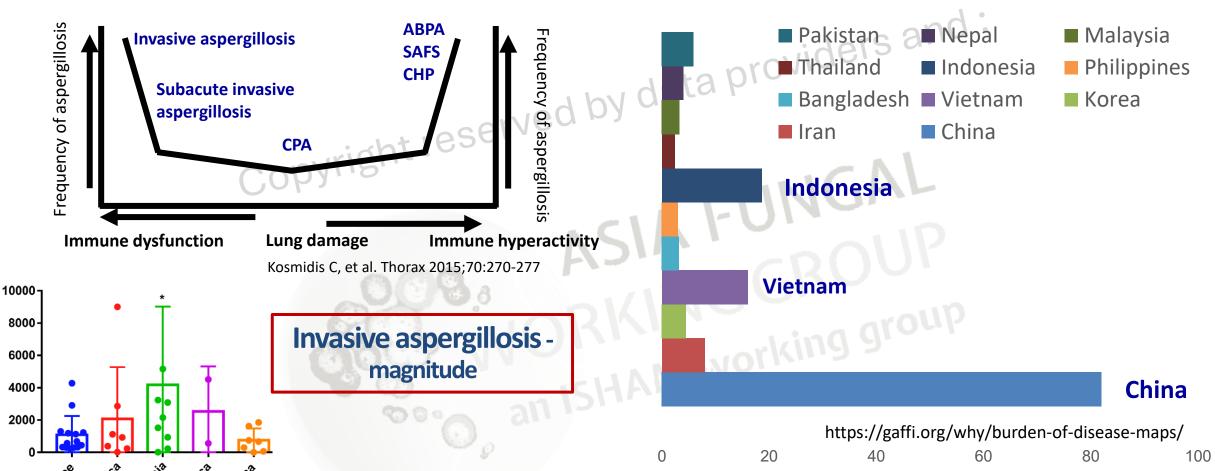
Reference	Country	Positivity	percentage
Valles J, et al. 2003	Spain	Pneumonia	19
Meersseman W, et al. 2004	Belgium	128/1850	6.9
Montagna MT, et al. 2013	Italy	12/5561	0.2
Baddley JW, et al. 2013	USA >600 hospitals (4y)	412/6424	6.4
Taccone FS, et al. 2015	8 countries, 30 ICUs	94/563	17% proven 36% putative

New therapies associated with invasive fungal disease

Chimeric antigen receptor T (CAR-T) cells therapy targeting the CD19 antigen also increases the risk of fungal infections

Novel Therapies Associated with Invasive Fungal Disease

Target	Agents	IFD Association
	Monoclonal Antibodies	
TNF alpha inhibitors	Infliximab, Adalimumab, Etanercept, Golimumab, Certrolizumab	Dimorphic fungal infection
CD52 inhibitors	Alem tuzumab	Pneumocystosis, cryptococcosis
IL17 inhibitors	Brodalumab, Ixekizumab, Secukinumab	Candidiasis (mucosal)
	Small Molecules	
BTK inhibitors	Ibrutinib, Acalabrutinib, Zanubrutinib	Invasive mold infection (CNS), cryptococcosis, blastomycosis
PI3K inhibitors	Duvelisib, Idelalisib	Pneumocystosis
JAK 1/2/3 inhibitors	Baricitinib, Ruxolitinib, Tofacitinib	Dimorphic fungal infection, pneumocystosis, Aspergillosis



Genetic Pathways Associated with Invasive Fungal Disease

Inherited Defects in Immunogenetic Pathways	IFD Association
IL-12 and interferon-γ	Dimorphic fungal infection
NADPH oxidase, GATA2	Invasive mold infection
CARD9, STAT1, STAT3, AIRE, IL-17, IL-12	Candidiasis

• A. fumigatus more common in temperate climate; A. flavus in tropical climate

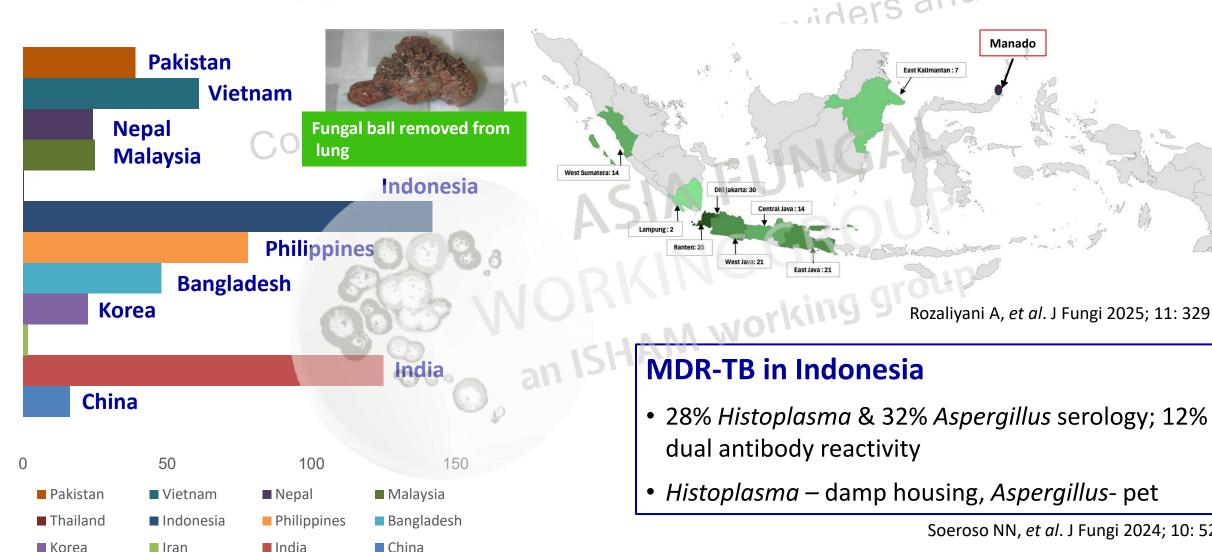
Number /100,000 population

• A. flavus in Vietnam: 85% resistant to azole, 50% to itraconazole (Tran-Dinh N, et al. Mycopathologia 2009; 168: 257-68; Dwong TMN, et al. J Fungi 2020; 6: 296)

Bongomin F, et al. J Fungi 2017; 3: 57

Cryptic species of Aspergillus

Posaconazole Amphotericin B Voriconazole Itraconazole Aspergillus lentulus Aspergillus fumigatiaffinis Aspergillus udagawae Aspergillus viridinutans Aspergillus pseudofischeri Aspergillus hiratsukae Aspergillus calidoustus Fusarium solani Fusarium spp Scedosporium apiospermum complex Lomentospora prolificans Mucorales


- Change due to expanding use of Aspergillus-active antifungal in prophylaxis, empirical & targeted therapy
 - Emergence of resistant cryptic Aspergillus spp (A. lentulus, A. ellipticus, A. alliaceus, A. nominus, A. tubingensis, A. montevidensis) in ~10%
 - Majority had immunosuppression & ICU admission
 - Mortality 40%

Perlin DS, et al. Lancet Infect Dis 2017; 17: e383-92

Chronic pulmonary aspergillosis

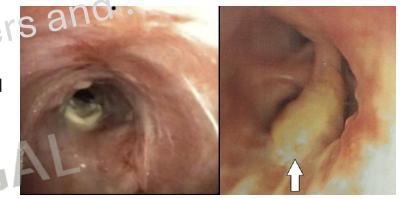
Number/100,000 population

Geographic distribution of CPA in Indonesia

https://gaffi.org/why/burden-of-disease-maps/

Soeroso NN, et al. J Fungi 2024; 10: 529

Clin Infect Dis. 2020 Jan 15; 70(2): 349-350.

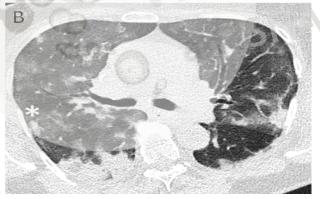

Published online 2019 May 11. doi: 10.1093/cid/ciz391

PMCID: PMC6938972

PMID: 31077266

Influenza Coinfection: Be(a)ware of Invasive Aspergillosis

Paul E Verweij, 1,2 Roger J M Brüggemann, 2,3 Joost Wauters. 4 Pai A Rijnders, 5 Tom Chiller, 6 and Frank L van de Veerdonk 2,7



- 3 cohort studies performed in Belgium & the Netherlands influenza-associated aspergillosis (IAA) in 16%–23% of influenza patients in the intensive care unit (ICU)
- IAA cases have been reported in at least 16 countries
- Mortality of influenza patients with IAA was 51% compared with 28% in those without IAA
- Influenza virus causes ulceration of the tracheobronchial epithelium, thus providing an opportunity for *Aspergillus* to cause invasive infection; steroid plays additional role
- Clinical presentation includes tracheobronchitis & other forms of pulmonary aspergillosis

Influenza/COVID-19 associated pulmonary aspergillosis

Factor	IAPA	capa capa
Incidence	10% of ICU patients	6.9% of ICU, 10.3% mechanically ventilated
Tracheobronchitis	Up to 55% patients	Very few cases
Aspergillus diagnostic	BAL GM positive in > 88%	BAL GM commonly positive
	Serum GM positive in 65%	Serum GM positive in 21%
Diagnostic algorithm	Consensus algorithm	4 algorithm with controversies

spergillosis Without fungal infections

28 experts group recommends

- Bronchoscopy & BAL GM
- •CT, serum GM/BDG, sputum & tracheal aspirate do not help in diagnosis

Verweij PE, et al. Intensive Care Med 2021; 47: 819-834

Fungal rhinosinusitis

India

Contemporary Review

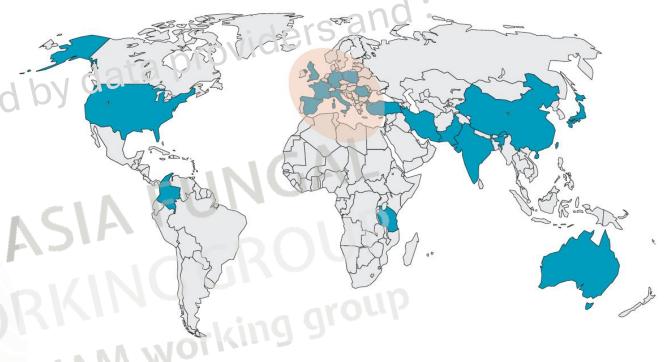
Fungal Rhinosinusitis: A Categorization and Definitional Schema Addressing **Current Controversies**

Arunaloke Chakrabarti, MD; David W. Denning, FRCP, FRCPAIII; B. J. Ferguson, MD; Jens Ponikau, MD; Walter Buzina, MD; Hirohito Kita, MD; Bradley Marple, MD; Naresh Panda, MS; Stephan Vlaminck, MD; Catherine Kauffmann-Lacroix; Ashim Das, MD; Paramjeet Singh, MD; Saad J. Taj-Aldeen, PhD; A. Serda Kantarcioglu, PhD; K. K. Handa, MS; Ashok Gupta, MS; M. Thungapatra, PhD; M. R. Shivaprakash, MD; Amanjit Kaur, MD; Annette Fothergill; B. D. Radotra, MD

Study in north India -1.4% adult suffer from

 8.1% of them are FRS (0.11% of population)

• A. flavus in 97.6% cases


217	() •		
aln	dor	nesi	a

10	ata providers and :						
do	Infection	Incidene or prevalence	None	Rate/100K	Total burden		
	Oesophageal candidiasis	1	-	10	28,560		
	Cryptococcal meningitis	1	340	8.7	8,670		
	Pneumocystis pneumonia	1	-	11.5	30,800		
	Histoplasmosis	1	?	0.4	1,060		
	Talaromyces marneffei infection	1	-	0.4	210		
	Invasive aspergillosis	1	-	18.6	49,500		
1	Mucormycosis	1	-	0.20	530		
11/1	Chronic pulmonary aspergillosis	Р	-	142	378,700		
. 11.1	Allergic bronchopulmonary aspergillosis (ABPA)	P	-	126	336,200		
1114	Severe asthma with fungal sensitisation (SAFS)	Р	-	166	443,800		
	Chronic fungal rhinosinutis	Р	294,000	110	294,000		

Aspergillus azole resistance

Susceptible (WT) (1) Overexpression of efflux transport (2) Reduced azole affinity of the enzyme CYP51A Coding region TR46/Y121F/M172I/T289A/G448S

Countries reporting resistance

- Increasingly recognized : clinical, environmental isolates
- In European countries 0.6% to 30%, having reached the highest rate (>20%) in the Netherlands, UK, & Germany
- China (5.5%), India (1.7%), Iran (3.5%), Japan (12.7%), Thailand (3.2%), Australia (2.6%), and the United States (0.6% to 11.8%)

Perlin DS, et al. Lancet Infect Dis 2017; 17: e383-92

Bastos RW, et al. PLoS Pathogen 2021; 17: e1010073; Friedman & Schwartz. J Fungi 2019; 5: 67; Verweij PE, et al. Clin Infect Dis 2016; 62: 362-368

J. Fungi **2020**, *6*, 296; doi:10.3390/jof6040296

Drug-Resistant Aspergillus flavus Is Highly Prevalent in the Environment of Vietnam: A New Challenge for the Management of Aspergillosis?

Tra My N. Duong ^{1,2}, Phuong Tuyen Nguyen ², Thanh Van Le ², Huong Lan P. Nguyen ¹, Bich Ngoc T. Nguyen ^{4,5}, Bich Phuong T. Nguyen ⁶, Thu Anh Nguyen ^{1,6}, Sharon C.-A. Chen ^{1,7}, Vanesce B. B. 100. Jeremy N. Day 2,10 and Justin Be ardsley 1, 2,5, a

Resistant/Non-WT Pattern	ITC	POS	VRC	AmB
Resistant/non-WT (n/N)	17/35	27/35	6/35	9/35
D == := (== = 1 /= = = 1 A/T 0/ (OE0/ CI)	48.6%	77.1%	17.1%	25.7%
Resistant/non-WT % (95% CI)	(31.4–66%)	(59.9–89.6%)	(6.6–33.7%)	(12.5–43.3%)

WT = wild-type; ITC = itraconazole; POS = posaconazole; VRC = voriconazole; AmB = amphotericin B; CI = confidence interval.

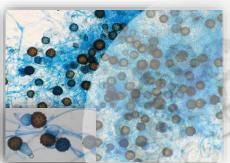
	IT	С	PO	S	™ ○ v	RC	Ar	nB
Country	MIC Range (mg/L)	MIC GM (mg/L)	MIC Range (mg/L)	MIC GM (mg/L)	MIC Range (mg/L)	MIC GM (mg/L)	MIC Range (mg/L)	MIC GM (mg/L)
Vietnam	1–8	1.52	0.5–2	0.91	1–4	2.16	2->16	4
Brazil	0.5–8	1.41	0.03-0.25	0.188	0.5-2	1.017	-	-
Iran	0.031-2	0.25	0.03 - 0.5	0.13	0.063-2	0.55	1–16	3.4
India	0.03 - 0.125	0.06	0.015 - 0.06	0.022	0.15-1	0.5	-	-
Europe *	0.03 - 0.25	-	0.06-0.125	-	0.125-0.25	-	-	-

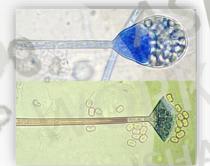
A systemic review 3633 A. flavus isolates- 538 (14.3%) resistance to amphotericin B

Fakhim H, et al. J Med Mycol 2022; 32: 101310

		E.	
Antifungals	Mean	Range	
	(µg/mL)	$(\mu g/mL)$	


We tested 208 A. flavus isolates


Amphotericin B	EUCAST	4.45	1-16
- (.K)	CLSI	0.64	0.25-2
Itraconazole	EUCAST	0.40	0.25-1
	CLSI	0.19	0.062 - 0.5
Voriconazole	EUCAST	1.45	0.25-4
	CLSI	1.26	0.5-4
Posaconazole	EUCAST	0.27	0.125 - 0.50
	CLSI	0.13	0.062 - 0.25
Isavuconazole	EUCAST	1.36	0.25 - 4
	CLSI	0.75	0.125-2
Caspofungin	EUCAST	0.49	0.25 - 1
	CLSI	0.51	0.25 - 1
Anidulafungin	EUCAST	0.01	0.008 - 0.016
	CLSI	0.01	0.008 - 0.016
Micafungin	EUCAST	0.08	0.008 - 0.25
	CLSI	0.03	0.008 - 0.125


Rudramurthy SM, et al Diagn Microbiol Infect Dis 2011; 71: 370-377

Mucormycosis in Asia - challenges

- Incidence & mortality very high in China, India, Iran, and Pakistan; 70 times higher rate in India compared to western countries; Mortality ~50%, high even in rhino-cerebral type
- Uncontrolled diabetes overshadows all other risk factors; >60% world diabetics reside here
- Mucormycosis in immunocompetent hosts –cutaneous & renal mucormycosis prevalent in China & India
- Many new Mucorales have emerged causing infections

Mucor irregularis

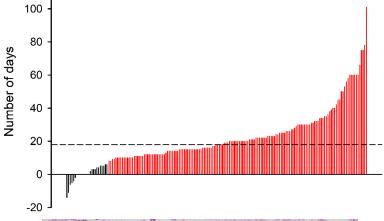
Rhizopus homothallicus Apophysomyces variabilis Saksenaea vasiformis

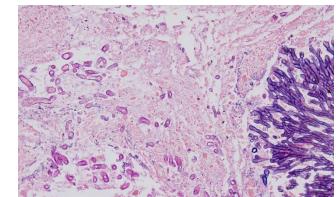
Renal mucor

Chronic cutaneous

- Outbreak CAM was declared as notifiable disease in India 47,508 reported cases within 45 days
- 'likely that the actual figures are considerably higher than this'


https://governmentstats.com/mucormycosis/index.html


COVID-19 associated mucormycosis outbreak


- COVID19 associated mucormycosis outbreak ravaged Asia; eserved by data provi >100,000 cases in India
- Presentation
- Nasal blockade or congestion, nasal discharge, facial pain
- Toothache, loosening of maxillary teeth, jaw involvement
- CAM prevalence 0.27% in COVID 19; 1.6% treated in ICU
- Cases were diagnosed median 18 days after COVID diagnosis
- 86.1% naso-orbital mucormycosis, 23.5% brain involvement
- Diabetes 62.7%; Steroid 78.1%
- Mortality 6 weeks (38.3%), 12 weeks (45.7%)

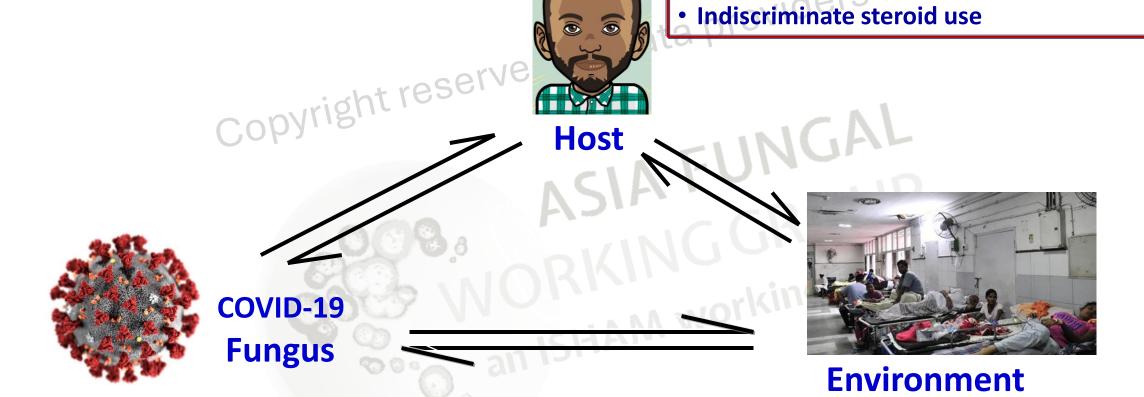
Patel A,...Chakrabarti A. Emerg Infect Dis 2021; 27: 2349-2359

The prevalence of mixed mould infection was 20%

Second wave

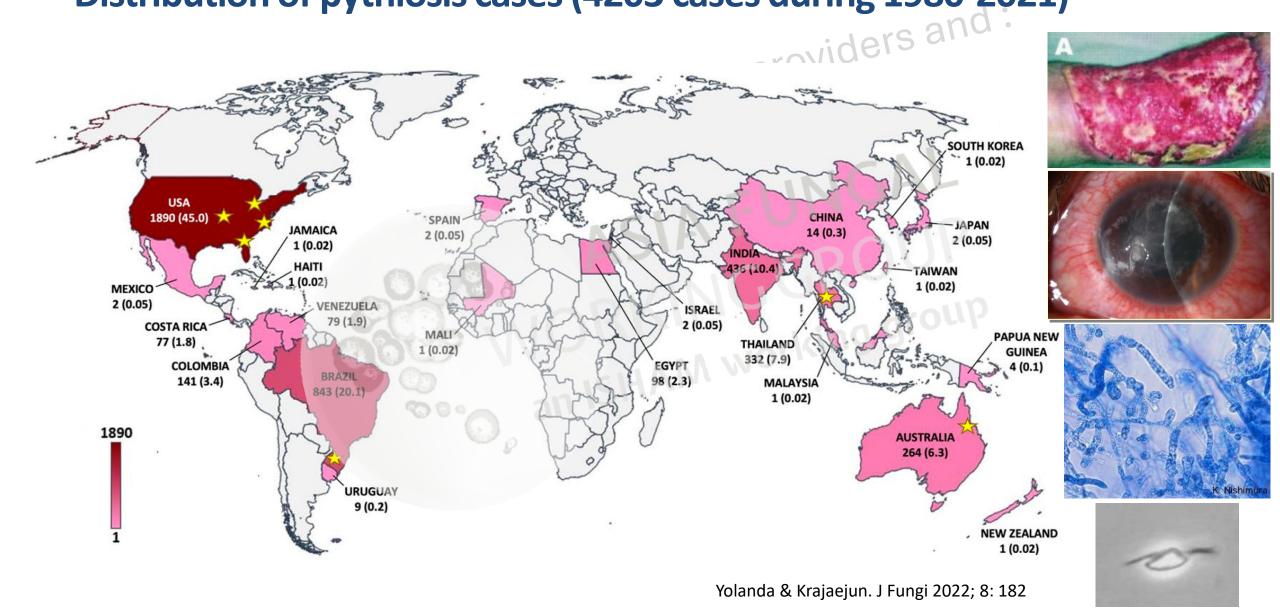
Steroid

Mucormycosis


Covid causing problem

Environment

Possible reasons for CAM outbreak

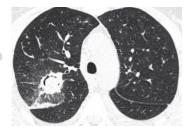


- Virus damages beta-cell pancreas
 Causes enrichment scores for complen
- Causes enrichment scores for complement
 & coagulation pathway

 High Mucorales spore in hospital and home environment

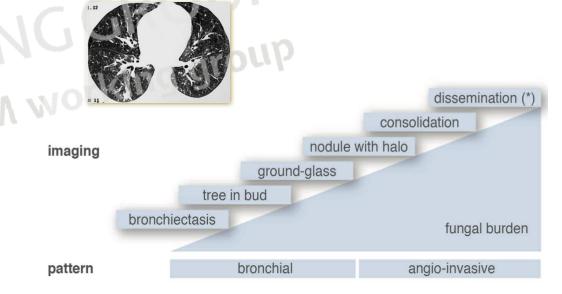
Uncontrolled & poorly controlled diabetes

Distribution of pythiosis cases (4203 cases during 1980-2021)

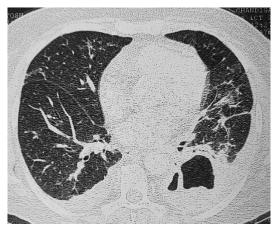


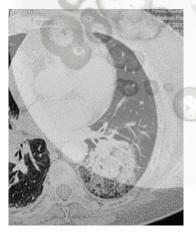
Can Imaging help?

Pathological changes in the lungs neutropenic host non-neutropenic host bronchial early inflammation phase days hours bronchial and alveolar involvement angioinvasion angioinvasive phase lung infarction culture-based diagnosis serology-based diagnosis


Neutropenic host: primarily angio-invasive

Non-neutropenic host: primarily airway invasive


Radiological findings are often non-specific



You may think of mucormycosis

Farmakiotis & Kontoyiannis. Infect Dis Clin N Am 2016; 30: 143

- Presence of severe sinusitis, eschar
- Fever, worsening of cough, brown/black sputum, chest pain, hemoptysis
- Patient is on voriconazole or echinocandins
- Acute & aggressive vascular event
- · Repeated absence of galactomannan & beta glucan

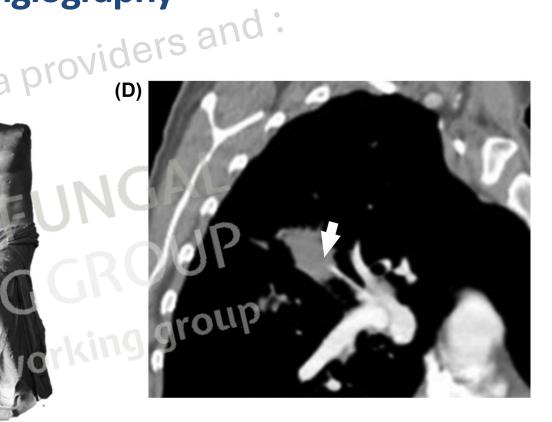
Cavity Consolidation

Mycotic aneurysm

Bird's nest sign

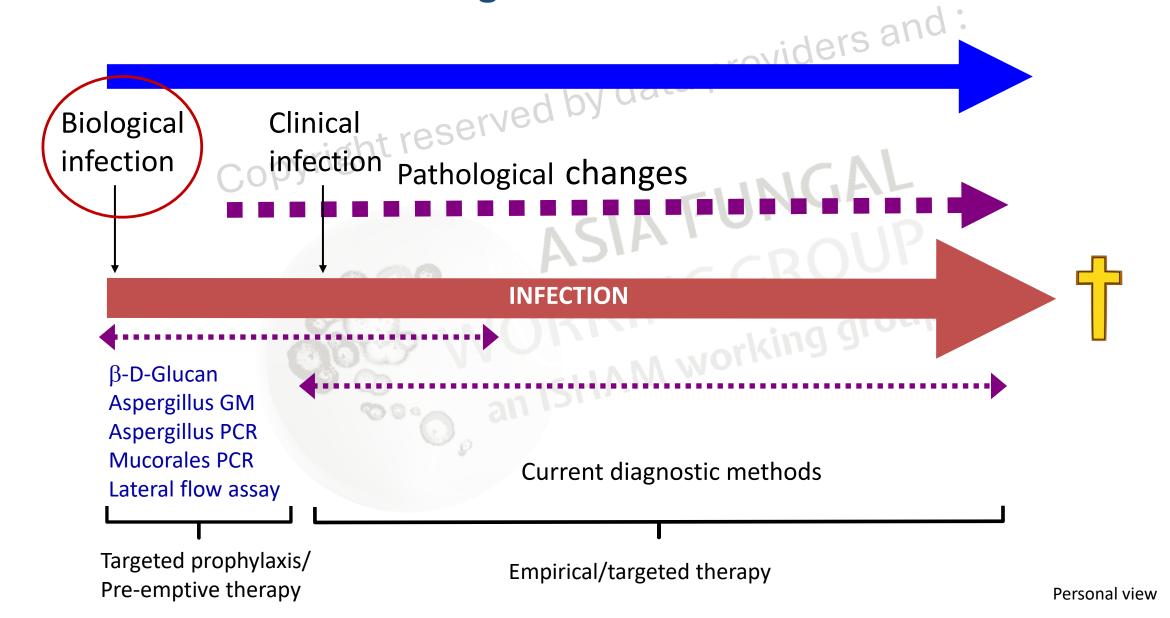
Cavitating mass

Vessel occlusion sign in CT pulmonary angiography


Intact arms of the Venus di Medici, Uffizi Museum, Florence, Italy

A negative vessel occlusion sign in a neutropenic patient with P. aeruginosa pneumonia

Broken arms of the Venus de Milo, Louvre Museum, Paris;


A positive vessel occlusion sign in a neutropenic patient with invasive aspergillosis

Flexible bronchoscopy may improve diagnosis n a ctual 1

In a study from India, FB was diagnostic in 71% cases of suspected invasive mould disease (n=107)

- Bronchoscopic abnormalities more frequent in those with confirmed pulmonary mucormycosis (67%) than invasive pulmonary aspergillosis (27%)
- Endobronchial nodule or growth in 22% of pulmonary mucormycosis & 5% of pulmonary aspergillosis
- Adherent mucus in 33% of the 27 confirmed pulmonary mucormycosis

What is desirable for diagnosis of Invasive mould infection?

Advanced diagnostic techniques improve sensitivity and TAT^{1,2}

Next-generation sequencing

Molecular

Metagenomics

PCR – specific, panfungal

Galactomannan

BDG

LFA/LFD

Cell-free DNA

Aspergillus, Mucor, others

PCR + galactomannan

	Specific PCR ^{3,4}	Panfungal PCR ^{3,4}
Advantages	 High sensitivity Rapid turnaround Helps in early diagnosis qPCR helps in burden quantification 	 Can detect most pathogens No need of clinical suspicion Medium sensitivity
isadvantages	 Difficult to distinguish colonisation versus infection Need of clinical suspicion 	 Less helpful for samples from non-sterile sites (commensals) Require second step for species

Lateral flow assay for aspergillosis⁵

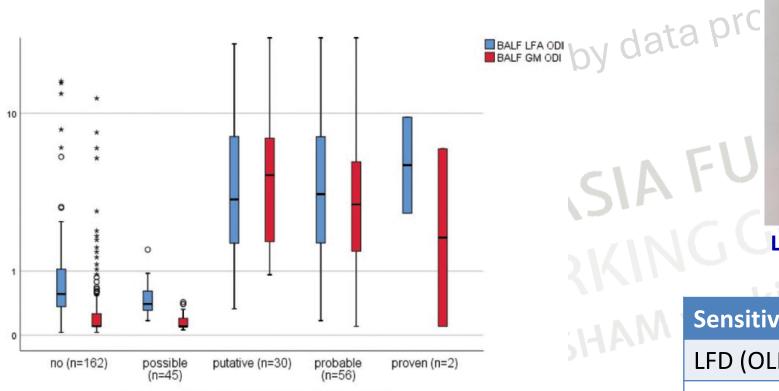
- Simple, rapid (30 min) digital read-out could improve data
- Mixed population: BAL sensitivity (77%) and specificity (81%), blood sensitivity (70%) and specificity (96%)
- Culture-positive samples: BAL LFA sensitivity (92%) and specificity (91%)

BAL, brenchealveolar lavage; BDG, β-d-Glucan; LFA, lateral flow assay; LFD, lateral flow device; min, minute; PCR, polymerase chain reaction; qPCR, quantitative polymerase chain reaction; TAT, turnaround time.

^{1.} Yan G, et al. *Mycopathologia*. 2021;186(5):575–82; 2. Chakrabarti A, personal opinion, 2025; 3. Valero C, et al. *J Fungi (Basel)*. 2022;9(1):59; 4. Friedman DZP and Schwartz IS. *Infect Dis Clin North Am*. 2023;37(3):593–616;

^{5.} Lass-Florl C, et al. Clin Microbiol Infect. 2021;27(9):1230-41.

Aspergillus lateral flow assay



- LFD, CE marked in 2017
- Detects Mab J5 extracellular protein secreted by Aspergillus hyphal tip
- Small volume of sample (75-150 μl)
- <10 min sample handling heat & centrifuge serum & BAL
- Visual reader to avoid subjectivity
- Result of test after 15 minutes
- Provides quantitative result
- Cross reacts with Penicillium spp.

- LFA, CE marked, FDA approval pending
- Detects ME-A5 mAb against GM epitope & another mAb against undisclosed Ag
- Small volume of sample (300 μl)
- <15 sample handling heat & centrifuge all sample types
- Visual reader to avoid subjectivity
- Result of test after 30 minutes
- Provides quantitative result
- Cross reacts Fusarium, Scedosporium

BAL GM vs. BAL LFA

Invasive Pulmonary Aspergillosis Classification

- Multi-centre study
- Majority (65%) were ICU patients

Comparison LFA & LFD

LFD for protein LFA for GM

Sensitivities	ICU
LFD (OLM) in BALf	+/-80%
LFA (IMMY) in BALf	60%–94%
LFA (IMMY) in serum	20%–56%

Guo J et al.. Eur J Clin Microbiol Infect Dis 2023; Mercier T, et al. Clin Infect Dis 2021; 72: 1577-84

PoC testing for mucormycosis

Development of a monoclonal antibody and a lateral-flow device for the rapid detection of a Mucorales-specific biomarker

Christopher R. Thornton^{1,2*†}, Genna E. Davies^{2†} and Laura Dougherty¹

¹Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom, ²ISCA Diagnostics Ltd., Hatherly Laboratories, Exeter, United Kingdom

- IgG2b murine mAb TG11 (binding to 20-250 kDa EPS secreted during hyphal growth)
- Pan-Mucorales
- No cross-reactivity with other moulds or Candida
- Competitive assay: T-line must be negative for a positive result

Currently under evaluation in human serum and BALf samples

PCR and molecular diagnosis – where do we stand?

Parameter	Aspergillosis	Mucormycosis	Hyalohyphomycosis	Phaeohyphomycosis	Panfungal
Commercial option	Yes	Yes	No	No	Yes
Standardisation	Extensive	In progress	No	No	Limited
Clinical validation	Blood: 79% (sen), 80% (spec) BAL: 80% (sen), 95% (spec)	Blood: >75% (sen), >85% (spec) BAL: >90% (sen), >94% (spec)	Fusarium Blood: 93% (sen), 100% (spec)	Little or none	Blood: 75% (sen), 70% (spec) BAL: 90% (sen), 75% (spec)
Species/genus differentiation	V ariable	Variable	Target specific species	Target specific species	Assay dependent, sequencing desired
Genetic resistance marker	Limited to environmental strains	No	No	No No	No

Recent emphasis in diagnosis

- Point of care test LFA
- Whole genome sequencing
- Cell free fungal DNA in blood

MAJOR ARTICLE

Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the Efor Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium

J. Peter Donnelly, Sharon C. Chen, Carol A. Kauffman, William J. Steinbach, John W. Baddley, Paul E. Verweij, Cornelius J. Clancy, John R. Wingard,

Proven mould infection

Fungus	Microscopic Analysis: Sterile Material	Culture: Sterile Material	Blood Serology	Tissue Nucleic Acid Diagnosis
Molds ^a	Histopathologic, cytopathologic, or direct microscopic examination ^b of a specimen obtained by needle aspiration or biopsy in which hyphae or melanized yeast-like forms are seen accompanied by evidence of associated tissue damage	Recovery of a hyaline or pigmented mold by culture of a specimen obtained by a sterile procedure from a normally sterile and clinically or radiologically abnormal site consistent with an infectious disease process, excluding BAL fluid a paranasal or mastoid sinus cavity specimen, and urine	in the context of a compatible infectious	Amplification of fungal DNA by PCR combined with DNA sequencing when molds are seen in formalin-fixed paraffin-embedded tissue

Probable invasive pulmonary aspergillosis

2008 EORTC/MSG >10 days neutropaenia Allogenic SOT >3 weeks corticosteroids T-cell immunosuppressants Inherited severe immunodeficiency (CGD, SCID) At least 1 CT sign: Dense, well-circumscribed lesion(s) with or without a halo sign

Air-crescent sign

Cavity

2020 EORTC/MSGERC

>10 days neutropaenia

Allogenic SCT, haematological malignancy (active/remission), Acute GVHD grade III/IV

>3 weeks corticosteroids

T-cell (including calcineurin inhibitors) or B-Cell (Bruton's tyrosine kinase inhibitors) immunosuppressants

Inherited severe immunodeficiency (CGD, SCID, STAT 3)

At least 1 CT sign:

- Dense, well-circumscribed lesion(s)
 with or without a halo sign
- Air-crescent sign
- Cavity
 - Wedge-shaped and segmental or lobar consolidation

2008 EORTC/MSG

Positive cytology, direct microscopy, or culture in: sputum, BAL, bronchial brush or aspirate

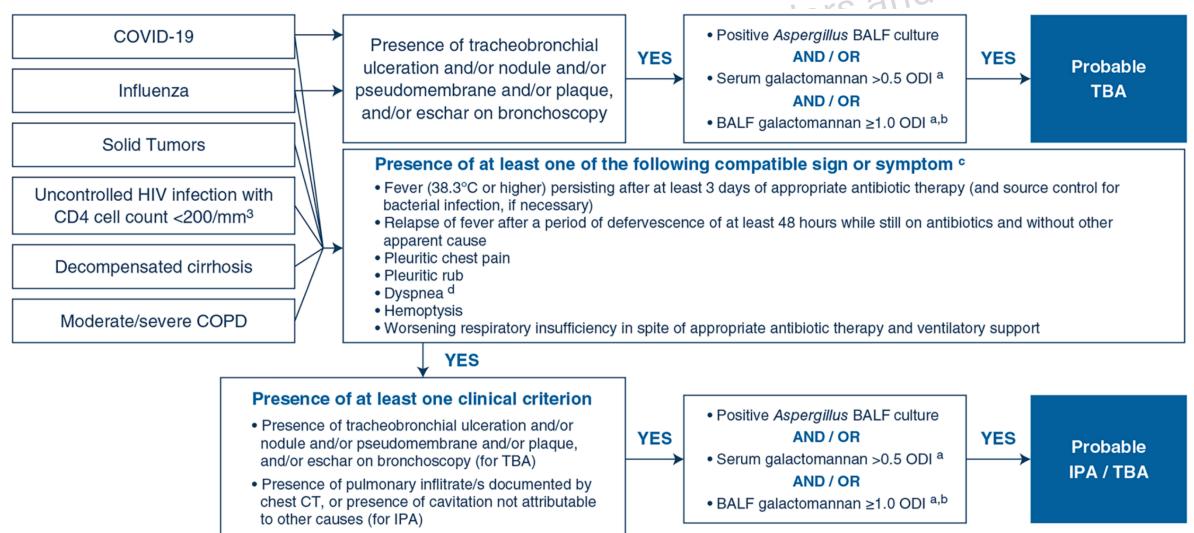
GM antigen ≥0.5 (plasma, serum, BAL, or CSF)

B-D-glucan (serum)*

2020 EORTC/MSGERC

Direct microscopy, or culture in: sputum, BAL, bronchial brush or aspirate

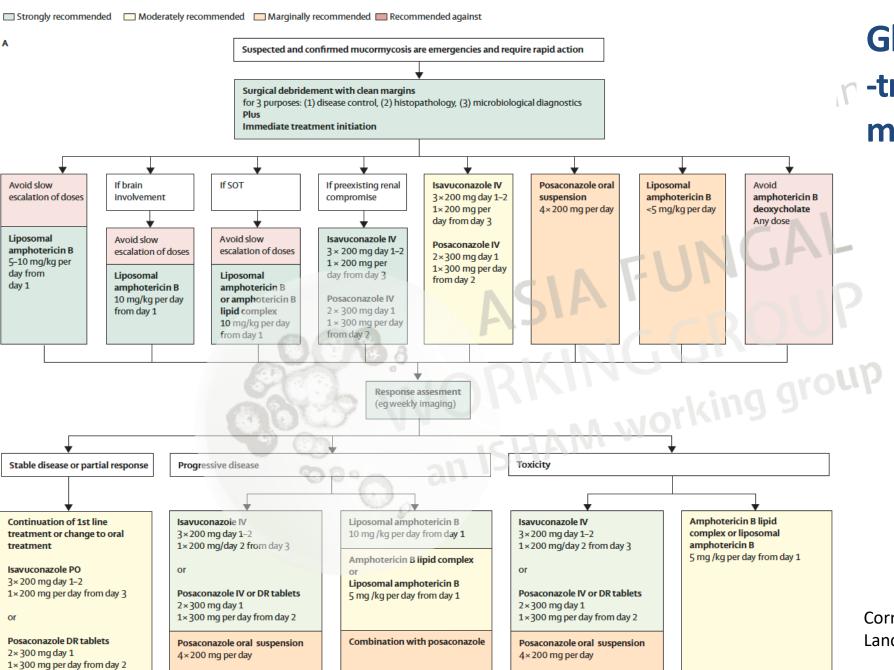
GM antigen (at least 1):


- Single serum or plasma ≥1.0
- Single BAL fluid ≥1.0
- Single serum or plasma ≥0.7 and BAL fluid ≥0.8
- Single CSF ≥1.0

Aspergillus PCR (at least 1):

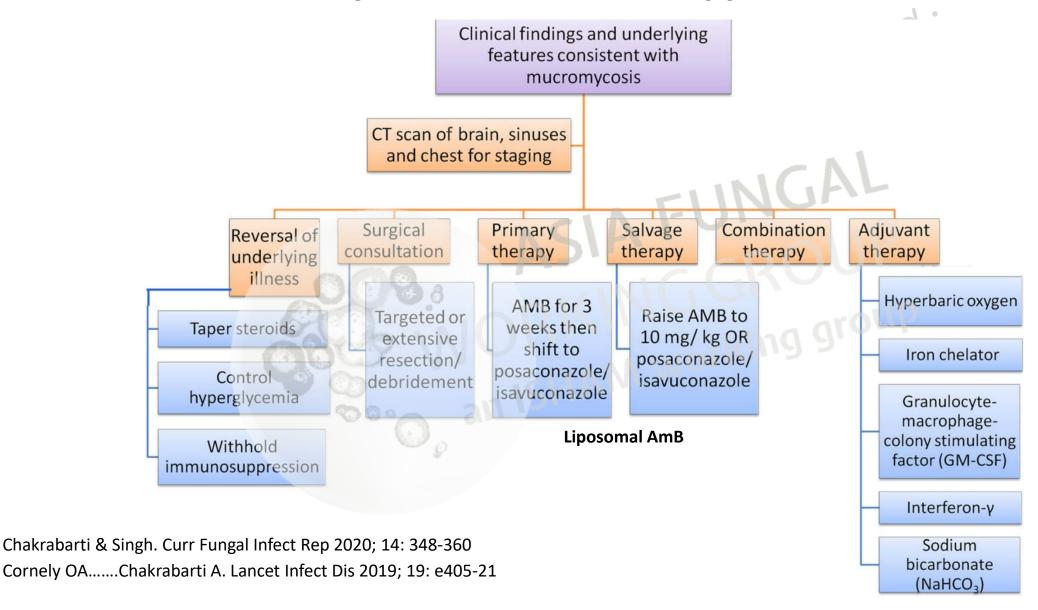
- ≥2 consecutively plasma, serum, or whole blood PCR+
- ≥2 duplicate BAL fluid PCR+
- ≥1 PCR+ in plasma, serum, or whole blood and PCR+ in BAL fluid

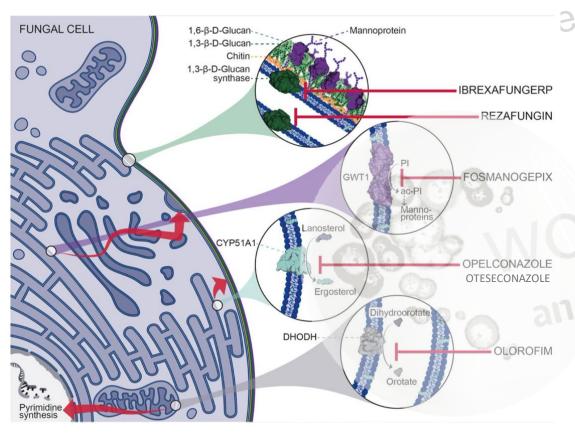
Mycological evidence


Consensus definition for IA from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, ISHAM

Treatment of invasive aspergillosis – requires a multi-disciplinary approach

- **Prophylaxis** Posaconazole, voriconazole, echinocandins
- providers and: • Empiric/pre-emptive therapy - LAMB, echinocandins or voriconazole (when mucormycosis excluded); Isavuconazole or LAMB when mucormycosis not excluded
- Targeted therapy Voriconazole or isavuconazole or posaconazole first choice; Liposomal amphotericin B or other lipid preparations, echinocandins, itraconazole
- Surgery massive haemoptysis, endocarditis, sinus disease, pericardium or great vessel involvement


- Response monitoring HRCT every 7-10d
 Failure / ^----• Failure (†symptoms, new lesion, no decrease, intolerance) – alternate therapy (combination)
- Reduce immunosuppression, especially steroid during voriconazole therapy to avoid steroid myopathy (methyl prednisolone)


Global guideline
-treatment of
mucormycosis

Cornely OA......Chakrabarti A. Lancet Infect Dis 2019: 19: e405-21

Treatment of mucormycosis – multimodal approach

Novel antifungals

Drug	Family	Target of action
Ibrexafungerp	Triterpenoid	1-3-β-D-glucan synthase inhibition
Rezafungin	Echinocandin	1-3-β-D-glucan synthase inhibition
Fosmanogepix	Gepix mannoprotein synthase	Inhibits GPI-anchored cell wall transfer protein 1 (Gwt1) [affects anchoring of mannoprotein in cell wall]
Olorofim	Orotomide	Inhibits pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH)
Opelconazole	Triazole	14-α-demethylase inhibition
Oteseconazole	Tetrazole	14-α-demethylase inhibition

Hoenigl M, et al. Drugs 2021; 81: 1703-1729

Activity of newer antifungal

of newer antifungal					
Antifungal drug	Aspergillus		Mucorales	Fusarium	Scedosporium
	Aspergillus spp.	Azole- resistant		UNIG	AL
Isavuconazole		Variable activity	Variable activity	0/4	i IP
Posaconazole	008	High- dose	WINC	Salvage therapy	
Rezafungin	1	NO	(VIII)	orking '	Variable activity
Ibrexafungerp	9 00	an 18	HAMW		Variable activity
Olorofim	0	P		Variable activity	
Fosmanogepix			Variable activity		

Summary

- Prevalence of invasive mould infection is on rise globally; more in Asian countries
- The spectrum of vulnerable host range has increased
- New species & cryptic species cause challenging infection
- · Aspergillus flavus is equally isolated as A. fumigatus
- COVID19 had impact CAPA & outbreak of CAM
- Drug resistance in Aspergillus fumigatus & A. flavus has emerged
- Diagnosis & management of invasive aspergillosis & mucormycosis are serious challenge due to low sensitivity in diagnosis & high mortality
- POCT in aspergillosis; molecular diagnosis in IMD have raised hope for early diagnosis
- Posaconazole & isavuconazole are recommended for first line therapy in aspergillosis
- Newer antifungal Fosmanogepix & Olorofim are new hopes for managing IMD

THANK YOU and:

