

Antifungal stewardship: best practice

Sharon Chen

Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, NSW, Australia

www.wslhd.health.nsw.gov.au/CIDM-PH

DISCLOSURES

- Untied educational grants from MSD Australia, F2G Ltd.
 Manchester, UK
 Antifuncal Astri Antifungal Advisory Board of MSD Australia, Gilead Sciences Inc., F2G Ltd.
 Speakers Foot
- Speakers Fees, Gilead Sciences, Inc.

Agenda

- Why is antifungal stewardship ("AFS".....A important?
 - o Slow down "AMR" (or "AFR"); which fungi to
- What is AMS?
- vvnat is AMS?

 o AMS strategies what can we learn from bacteria (and viruses)

 Who does it?
 - o Who does it?
- What is the evidence supporting it?

AMR: a global problem

WHO declared AMR as one of the **Top 10**

- global health threats
 700,000 deaths/year globally
- 500,000 multi-drug resistant TB/year
- 58,000 newborns die/year in India
- 870,000 disability adjusted life years/year in EU

AMR: a national (Aussie) problem

Australia's top three resistant bacterial threats

CRE

Carbapenemase-resistant enterobacteriaceae

Up to half of bloodstream infections eaused by CRE result in death

MRSA

Methicilin-resistant stanhylococcus aureus

MRSA can cause skin and wound infections, pneumonia and blood stream infections. It is one of the most common causes of health care-associated infections.

VRE

Vancomycin-resistant enterococcus faecium

VRE can cause bloodstream, surgical site and urinary tract infections Prof. John Turnidge Dr. Jan bell Prof Karin Thursky

AURA

(Antimicrobial Use and Resistance in Australia) Report 2019

No mention of fungi

What causes antifungal resistance

Antifungal use

Travel

Fungi

Turn on genes responsible for resistance

Change to protect themselves (B)

Receive resistant genes from other fungi (B)

Agriculture and environment

Poor infection prevention and control

The main players

- Candida species N. glabratus, C. auris, C. tropicalis, others
- Aspergillus fumigatus complex (A. fumigatus sensu stricto)
- Increasingly Lomentospora, Fusarium, Mucorales
- Non-Candida uncommon (rare) yeasts

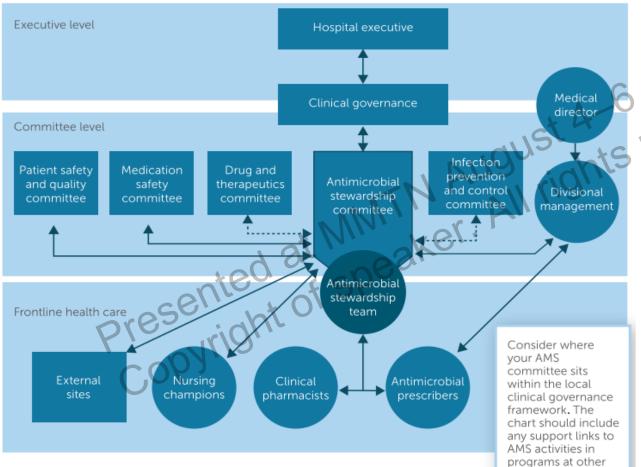
Inherited and acquired resistance: yeasts

Fungus (examples)	Inherent "R"	Acquired"R"
N. glabratus	Triazoles	Echinocandins
'C. krusei'	Triazoles 315t 4	Echinocandins
C. auris	Azoles, (AMB, S Asia)	Echinocandins
Trichosporon	Echinocandins, AMB	Fluconazole
Saccharomyces/ Malassezia	Echinocandins	Fluconazole
Rhodotorula	Triazoles	
Saprochaetel Magnusiomyces	Echinocandins	

Inherited and acquired resistance: moulds

Fungus	Inherent resistance	Acquired resistance
A. fumigatus	Fluconazole	Voriconazole, isavuconazole
A. terreus	Fluconazole, AMB	Voriconazole, isavuconazole
A. flavus	Fluconazole, AMB	Voriconazole, isavuconazole
Mucorales sent	Fluconazole, voriconazole	?
Fusarium spp.	Echinocandins, variably to AMB, triazoles	?
Lomentospora prolificans	Pan-resistant Gamaletsou, Walsh a	? nd Sipsas, Turk J Hematol 2018 25: 1-11

ANTIMICROBIAL STEWARDSHIP (AMS)


- Systematic approach to optimising use of 23 Reduce inappropriate antifungal use
 Improve patient outcomes

 Reduce
- - Reduce adverse effects/toxicity
 - Reduce development of antimicrobial resistance
 - Reduce costs

Essential AMS strategies

- Establish a multidisciplinary AMS team
 AMS policy (restricted antimicrobial formulary)
- 3. Education to prescribers, pharmacists, nurses and consumers
- 4. Implement clinical guidelines consistent with eTG (e-therapeutic guidelines); local bodies
- 5. Review antimicrobial prescribing with intervention and feedbackMonitor antimicrobial use and outcomes

AMS structure (team)

boottbeare sites

AMS policy and antimicrobial formulary restrictions

Pharmacy formulary - List of medications available for use in a hospital

- Determined by hospital Drug and Therapeutics Committee Formulary restrictions
 - Formulary may include further restrictions of use either

 - By prescriber (e.g. infectious diseases only)
 By indication (e.g. piperacillin/tazobactam for febrile neutropenia)
 - Determined by AMS committee
 - Commonly used "traffic light system"

Antimicrobial formulary

Antimicrobial category	Details and examples
Unrestricted	 Can be prescribed without an approval Examples include benzylpenicillin and doxycycline
Restricted or 'protected'	 Require an approval within a nominated time of the medicine being prescribed (e.g. within 24 hours) Individual prescription review is required for prolonged use (beyond 48–72 hours) Examples include broad-spectrum antimicrobials with potential to promote resistance – such as ceftriaxone, vancomycin, ciprofloxacin and meropenem – and those that are common targets for antimicrobial stewardship programs
Highly restricted SCI	Require discussion with a nominated expert to obtain approval before the medicine can be initiated, to ensure that use is appropriate and to enable ongoing patient follow-up
Coh,	 Often, a full, formal, specialist clinical consultation for these patients is also recommended
	 Examples include antimicrobials viewed as last-line agents and reserved for highly resistant pathogens, or medicines with high potential toxicity or high cost, such as echinocandins, colistin and linezolid

Management restricted approvals

- There are a few approaches tailored to hospitals workflow/resources:
- 1. Electronic approval system/Clinical Decision Support
- 3rd party e.g. *Guidance*, eASY, IDEA3S, TheraDOC, Treat
 2. AMS Pager
 3. AMS hotline

ANTIMICROBIAL ADVICE AND APPROVALS

Guidance MS Asserved

- Electronic decision support and approval system
 - MANDATORY to obtain approvals for restricted antimicrobials
- Training for interns, jRMOs

Education

- Opportunistic: AMS rounds August Andrews

 E-resources

 Clinical guidelines: AFWG, ANZMIG, IDSA, ECMM

 Phone apps

Review Antimicrobial prescribing

- Regular antimicrobial review and feedback to prescriber is the **Cornerstone of AMS**
- Most widely practice AMS strategy
- Importance of starting antimicrobials without delay (e.g. in severe sepsis) and review of microbiology (usually 48 hours turn around)

Common interventions

- 1. Intravenous to oral (IV-to-Oral) switch
 2. De-escalation (cf. escalation)
 3. Dose optimisation
 4. Therapeutic drug monitoring
 5. Mierobiologica

 - 5. Microbiology interpretation
 - 6 Duration advice

Intravenous to oral

- Guidelines
- Dependent on fungal infection (ID consult)
 - o e.g. amphotericin B formulation use in cryptococcosis
 - o e.g. candidiasis (echinocandin to azole)
- Dependent on antifungal agent
 - Azoles vs. other agents
- Dependent on host co-morbidity (renal dysfunction)

Western Sydney Local Health District Antimicrobial Stewardship Program IV TO ORAL SWITCH

August rights res Consider conversion from IV to ORAL antibiotics when ALL of the following apply:

- Temperature <38°C for 24 hours
- 2. Improving signs and symptoms
- Oral/nasogastric intake tolerated 3.
- Suitable ORAL alternative available 4.
- Patient likely to be adherent with oral therapy 5.
- Patient has not been diagnosed with one of the conditions below: 6.

Conditions where IV to Oral switch may NOT be appropriate:		
Bone and Joint Infections	Deep seated abscess	
Cystic Fibrosis	Meningitis	
Endocarditis	Bacteraemia	

WSLHD Antimicrobial Stewardship Committee October 2015 Copyright WSLHD

Dose optimisation

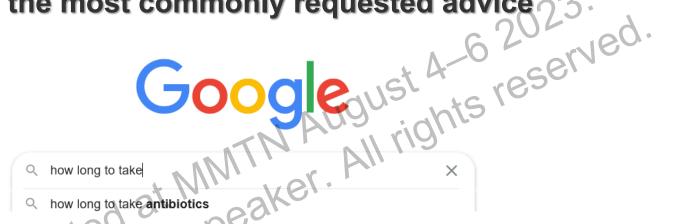
- Certain indications for dose optimisation include
 - Increase dose:
- se dose:
 Tissue penetration (e.g. meningitis, CNS, sanctuary sites)
 - Fungi with higher MICs (N. glabratus, A. fumigatus)
 - Augmented renal clearance (eGFR >130)
 - Sepsis/Septic shock, hypoalbuminemia
 - Extracoropeal Membrane Oxygenation (ECMO)
 - Decrease dose:
 - Renal impairment (eGFR<50)
 - **Depends on drug:**
 - Obesity, renal replacement therapy, drug interactions

TDM

Active process of individualising a dose by maintaining plasma/blood concentration

Iterative process:

Give dose


Measuring a concentration of a drug
Adjust dose /continue dose
Sources of PK variability

- Compliance
- Age –neonates, children, elderly
- Physiology- gender, pregnancy, albumin levels, renal impairment
- Drug-drug interactions, food interactions
- Genetic polymorphisms on metabolism

Duration

This is the most commonly requested advice

- Magic numbers based on convention vs. best evidence based
- 6, 12 weeks? 6 months, 1 year, "don't know"
 Can depend on clinical response but usually guided by Therapeutic Guidelines: Antibiotic

Evidence supporting AMS

- Benefits of effective AMS programs:

 - Reduced antimicrobial utilisation
 Reduced acquisition costs of antimicrobials
 - Improved appropriateness of prescribing
 - Reduced adverse effects associated with antimicrobial use
 - Reduced Length Of Stay
- Balancing measures:
 - No increase in infection related mortality or morbidity

Entirety of published evidence up to 2016

Antimicrobial Agents and Chemotherapy

Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs

Styliani Karanika, Suresh Paudel, Christos Grigoras, Alireza Kalbasi, b

Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA"; Medical Oncology Department, Dana-Farber Cancer Institute, Boston Massachusetts

- 25,000 publications, 26 studies were analysed
- Compared pre vs post AMS program (range 6 mo 6

Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs

Styliani Karanika, a Suresh Paudel, a Christos Grigoras, a Alireza Kalbasi, b Eleftherios Mylonakisa

Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital Prolity ace, Rhode Island USA Medical Oncology Department,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA^b

Reduced Length of Stay

Total antimicrobial utilisation reduced by

20% (95% CI 7.5-30%)

Reduced antimicrobial costs

15%

Antifungal utilisation reduced by 35%

40% (95% CI 16-62%)

The AMS Team: fictional

- AMS Ward Rounds
- Mondays, Wednesdays & Fridays @ 10:30am
 Team
 ID Doctors
 AMS Pharmacists (dedicated)
 Infection Provided

- Infection Prevention & Control Team
- Clinical Microbiologist, Mycology scientist

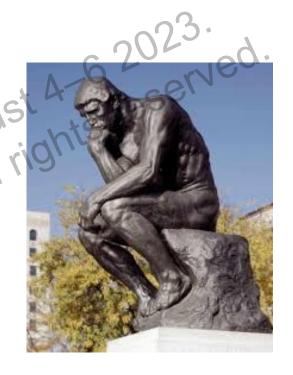
What the AMS team does?

- - Appropriate duration, cessation
 - Directed therapy/Broadening cover

Always happy

sto answer questions on the round!

De-escalation


V to Oral Swife!

Patient safety & quality of care

- Education vs enforcement
- Improve antibiotic literacy
- Minimise additional work load
- Maximise efficiency of the system

THANK YOU'S reserved.

Presented at MM Speaker. All the reserved.

Copyright of speaker.

Factors influencing the outcome of antifungal therapy Van t' Wout J. 1996 ust A-6 2023. ights reserved.

Immunological status Underlying disease Site of disease Prosthetic material

FUNGUS

efficacy

resistance

Virulence

Propensity to disseminate

Species

Drug resistance

ANTIFUNGAL DRUG

> Prompt aggressive therapy Compliance

Drug pharmacokinetics

- tissue penetration
- drug inactivation

Elizabeth Johnson, with permission, PH England

Where can I learn more?

