Trends of Antimicrobial Resistance in Asia

Infectious Disease Specialist, Manila, **Philippines**

Member, Southeast Asia Antimicrobial Stewardship Working Group

Disclosure:

• No significant disclosures associated with the talk 2023. August the talk 2023. August the talk reserved. All rights reserved. Presented at MMTH All rights reserved. Presented at Speaker.

Content

- SENTRY data on trends of AMR using the served WHO GLASS AMR Trend

 - AMR Trend in selected Asian countries
 - SENTRY fungal susceptibility patterns
 - Trends of Candida sp. susceptibility by ICMR

AMR burden is large in Southeast Asia, a lack of standardized and comprehensive data prevents a precise quantification of AMR-Presented morbidity, mc economic cost. associated morbidity, mortality and

Networks contributing to surveillance efforts for AMR in Southeast Asia

- ANSORP: Asian Network for Surveillance of Resistant Pathogens (1996)
- VINARES: Vietnam Resistance
- Asia WT-MOPs: Wellcome Trust Major Overseas Programmes
- GARP: Global Antimicrobial Resistance Partnership (2008)
- PulseNet Asia Pacific (2002)
- NARST: National Antimicrobial Resistance Surveillance Thailand (1998)
- AMRCP: Thailand AMR Containment and Prevention

SENTRY: **Nations** Surveyed and Number of **Isolates Per** Country **Collected by** the **SENTRY** Program (1997-2016)

Asia-Pacific (7111)	Europe (19 123)	Latin America (5133)	North America (34626)
Australia (2856)	Austria (42)	Argentina (1144)	Canada (2541)
Hong Kong (378)	Belarus (50)	Brazil (1714)	United States (32 085)
Japan (1260)	Belgium (680)	Chile (1635)	4
Malaysia (169)	Czech Republic (125)	Colombia (86)	
New Zealand (688)	France (3533)	Mexico (430)	
Philippines (62)	Germany (1724)	Uruguay (26)	
Singapore (280)	Greece (510)	Venezuela (98)	
South Korea (648)	Hungary (128)	146	
Taiwan (585)	Ireland (900)	· ants	
Thailand (185)	Israel (740)		
	Italy (15440)		
. 1	The Netherlands (32)		
	Poland (1011)		
	Portugal (140)		
00	Romania (19)		
tev cc	Russia (803)		
	Slovenia (89)		
	Spain (1979)		
·du	Sweden (1703)		
(10)	Switzerland (619)		
	Turkey (1084)		
	United Kingdom (1431)		
	Ukraine (137)		

SENTRY: Susceptibility of *Streptococcus pneumoniae to Penicillin G*

MDR Streptococcus pneumoniae stratified by region

Biennial frequency of multidrug-resistant isolates stratified by geographic region.

SENTRY: MRSA Trend in all continents

• SENTRY Program 20-year trends in percentage of *Staphylococcus aureus* BSI isolates that are MRSA

SENTRY: MRSA rate

SENTRY: Antimicrobial Resistance Trends: Increase from 1997-2000 vs. 2013-2016 for all *Enterobacteriaceae* by Geographic Regions

SENTRY: Carbapenem-resistant Enterobacteriaceae (CRE) Trends Over Years by Region

SENTRY: Trend of MDR Pseudomonas aeruginosa in 4 Regions

Percentage of multidrug-resistant *Pseudomonas aeruginosa* in 4 regions over the 20-year SENTRY Program study period.

SENTRY: Susceptibilities of *Pseudomonas aeruginosa* Isolates to Meropenem in Each 4-Year Period for 4 Regions

SENTRY: Susceptibilities of *Pseudomonas aeruginosa* Isolates in Each 4-Year Period for Asia Pacific

					L. 2	
		Su	sceptibility % by Time	Period ^a	erveu.	
Region Antimicrobial Agent	1997–2000	2001–2004	2005-2008	2009-2012	2013–2016	Overall
Asia-Pacific (n)	(1243)	(792)	(811)	(1327)	(1236)	(5409)
Amikacin	96.5	94.4	91.6	94.2	95.0	94.5
Cefepime	84.8	82.2	77.4	79.0	86.8	82.3
Ceftazidime	81.2	81.4	75.2	77.5	81.9	79.6
Ciprofloxacin	85.8	82.1	77.3	80.8	83.6	82.2
Colistin	N/A	N/A	97.2	98.6	99.1	98.5
Meropenem	84.7	80.8	79.4	77.1	82.8	81.1
Piperacillin-tazobactam	77.7	74.2	69.4	71.8	80.2	75.1
Tobramycin	92.0	88.5	87.8	91.8	93.7	91.2

2

SENTRY: Trend of MDR A. baumanii complex in 4 Regions

SENTRY: Susceptibilities of *A. baumanii complex* Isolates to Meropenem in Each 4-Year Period for 4 Regions

SENTRY: Susceptibilities of *A. baumanii complex* Isolates in Each 4-Year Period for Asia Pacific

		% Susceptible by Time Period ^a (No. of Isolates Tested)							
Acb Complex	1997–2000	2001–2004	2005–2008	2009-2012	2013–2016	Overall			
Asia-Pacific	(314)	(346)	(535)	(674)	(458)	(2327)			
Amikacin	75.5	63.9	40.4	22.3	29.5	41.2			
Gentamicin	64.0	51.6	32.5	18.2	26.9	34.4			
Tobramycin	76.4	62.7	41.9	24.4	30.6	42.3			
Levofloxacin	64.6	54.6	31.8	15.7	19.0	32.5			
Ampicillin-sulbactam	NTCO	59.8	35.7	17.8	20.5	26.9			
Ceftazidime	59.6	60.1	31.8	17.1	20.7	33.3			
Imipenem	89.2	70.8	43.0	18.4	21.6	42.0			
Meropenem	88.9	71.4	43.0	18.5	21.0	42.0			
Minocycline	NT V	100.0	84.9	79.8	74.2	80.3			
Colistin	NT	NT	99.1	99.0	93.7	97.5			

Antimicrobial Resistance Surveillance Progress

• In 2015, WHO Global AMR Surveillance System (GLASS) was established to enable the systematic collection of data globally: AMR in commón bacteria and invasive fungi, and antimicrobial consumption (AMC) in humans.

Bangladesh Brunei Bhutan Cambodia India Indonesia Iran Iraq Japan Kuwait Laos Lebanon Myanman Malaysia Nepal **Philippines** Qatar Saudi Arabia Singapore Sri Lanka South Korea Thailand Timor Leste

WHO GLASS AMR: Time series of Methicillin resistance (S. aureus) 2017-2020

WHO GLASS AMR: Time series of Cefotaxime resistance (K. pneumoniae) 2017-2020

AMR Surveillance in Asia

- Indian Council of Medical Research(ICMR)-Antimicrobial Resistance Research and Surveillance Network
- China Antimicrobial Surveillance Network [CHINET]
- One Health Report on Antimicrobial Utilisation and Resistance in Singapore, 2019; A Report by the One Health Antimicrobial Resistance Workgroup
- National Antimicrobial Resistance Surveillance Thailand (NARST)
- Malaysian National Surveillance on Antimicrobial Resistance (NSAR)
- Antimicrobial Resistance Surveillance in the Philippines (ARSP)
- Nippon AMR One Health Report (NAOR) 2020

TREND OF AMR IN SELECTED ASIAN COUNTRIES:

https://pubmed.ncbi.nlm.nih.gov/31478103/ Med J Malaysia Vol 76 No 5 September 2021 https://www.mhlw.go.jp/content/10900000/000885373.pdf http://narst.dmsc.moph.go.th/rmscantibiograms.html https://arsp.com.ph/arsp-2022-annual-report-data-summary-is-now-available-for-download/ https://main.icmr.nic.in/sites/default/files/upload documents/AMR Annual Report 2021.pdf https://www.moh.gov.sg/resources-statistics/reports/one-health-report-on-antimicrobial-utilisation-and-resistance-2019

TREND OF AMR IN SELECTED ASIAN COUNTRIES:

https://arsp.com.ph/arsp-2022-annual-report-data-summary-is-now-available-for-download/

https://main.icmr.nic.in/sites/default/files/upload documents/AMR Annual Report 2021.pdf

TREND OF AMR IN SELECTED ASIAN COUNTRIES:

http://narst.dmsc.moph.go.th/rmscantibiograms.html

https://arsp.com.ph/arsp-2022-annual-report-data-summary-is-now-available-for-download/

https://main.icmr.nic.in/sites/default/files/upload documents/AMR Annual Report 2021.pdf

TREND OF AMR IN SELECTED ASIAN COUNTRIES:

https://pubmed.ncbi.nlm.nih.gov/31478103/ Med J Malaysia Vol 76 No 5 September 2021 https://www.mhlw.go.jp/content/1090000/000885373.pdf http://narst.dmsc.moph.go.th/rmscantibiograms.html https://arsp.com.ph/arsp-2022-annual-report-data-summary-is-now-available-for-download/ https://main.icmr.nic.in/sites/default/files/upload documents/AMR Annual Report 2021.pdf https://www.moh.gov.sg/resources-statistics/reports/one-health-report-on-antimicrobial-utilisation-and-resistance-2019

Fungal pathogens isolated from patients with bloodstream infection: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012–2017)

		Year/% resistant	t ^a (number test	ed)		02		
Organism	Agent	Total	2012	2013	2014	2015	2016	2017
C. albicans C. tropicalis	Fluconazole Caspofungin Micafungin Anidulafungin Fluconazole	0.0 (91) 0.0 0.0 0.0 3.7 (27)	0.0 (8) 0.0 0.0 0.0 0.0 (2)	0.0 (18) 0.0 0.0 0.0 14.3 (7)	0.0 (8) 0.0 0.0 0.0 0.0 0.0 (3)	0.0 (12) 0.0 0.0 0.0 0.0 0.0 (4)	0.0 (25) 0.0 0.0 0.0 0.0 0.0 (7)	0.0 (20) 0.0 0.0 0.0 0.0 0.0 (4)
C. parapsilosis	Caspofungin Micafungin Anidulafungin Fluconazole	3.7 3.7 3.7 3.4 (29)	0.0 0.0 0.0 0.0 (2)	0.0 0.0 0.0 0.0 (2)	0.0) 0.0 0.0 0.0 (3)	0.0 0.0 0.0 12.5 (8)	14.3 14.3 14.3 0.0 (8)	0.0 0.0 0.0 0.0 (6)
	Caspofungin Micafungin Anidulafungin	0.0 0.0 S S	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
C. glabrata	Fluconazole Caspofungin Micafungin Anidulafungin	10.5 (38) 2.6 2.6 2.6	0.0 (3) 0.0 0.0 0.0	28.6 (7) 0.0 0.0 0.0	16.7 (6) 0.0 0.0 0.0	8.3 (12) 8.3 8.3 8.3	0.0 (6) 0.0 0.0 0.0	0.0 (4) 0.0 0.0 0.0
C krusei	Caspofungin Micafungin Anidulafungin	0.0 (6) 0.0 0.0	NI NI NI	NI NI NI	0.0 (1) 0.0 0.0	0.0 (2) 0.0 0.0	0.0 (2) 0.0 0.0	0.0 (1) 0.0 0.0

WHO GLASS-Fungi

 Early implementation protocol to support countries to strengthen or build their national fungal AMR surveillance and enable incorporation of AMR surveillance for invasive Candida into GLASS

					02:3.		
					6	200	160
AMA	<i>Candida</i>	Candida	Candida	Candida	Candida	Candida	Candida
	tropicalis	albicans	glabrata	parapsilosis	auris	utilis	krusei
	n=796	n=664	n=315	n=279	n=194	n=174	n=82
Anidulafungin	273/281	161/173	123/134	85/86	62/92	159/165	30/32
	(97.2%)	(93.1%)	(91.8%)	(98.8%)	(67.4%)	(96.4%)	(93.8%)
Caspofungin	760/790	634/656	171/310	271/277	135/193	159/166	46/82
	(96.2%)	(96.6%)	(55.2%)	(97.8%)	(69.9%)	(95.8%)	(56.1%)
Fluconazole	716/785	614/661	181/225	217/277	5/193	155/165	2/70
	(91.2%)	(92.9%)	(80.4%)	(78.3%)	(2.6%)	(93.9%)	(2.9%)
Micafungin	672/688	537/551	229/234	232/238	145/172	166/168	61/73
	(97.7%)	(97.5%)	(97.9%)	(97.5%)	(84.3%)	(98.8%)	(83.6%)
Voriconazole	736/770	626/648	197/225	247/255	48/142	167/169	80/81
	(95.6%)	(96.6%)	(87.6%)	(96.9%)	(33.8%)	(98.8%)	(98.8%)

AMR surveillance Network, Indian Council of Medical Research, 2021

Moving forward:

- Collaboration and coordination between existing surveillance networks could develop synergies, avoid redundancy and promote standardized collection and analysis of samples
- Determination of AMR profile and the dissemination of results should follow the recommendations of WHO's Global Antimicrobial Resistance Surveillance System (GLASS)
- Standardized reporting of results via a common platform would permit real-time information sharing, in a form that is clear and useful for the public, health professionals and policymakers.

Summary:

- SENTRY Program was a successful effort to establish AMR surveillance in Asia Pacific and in comparing AMR of the different continents.
- SENTRY: APAC problem on MDR S. pneumoniae and MRSA; ESBL-producing and MDR E. coli were higher than other continents until 2016
- Some Asian countries especially in SEA have local AMR surveillance in place
- India and China have the highest AMR trends in Asia
- There were low number of fungal isolates tested in SENTRY data
- India has a consistent Candida resistance surveillance in Asia
- Consistency in the surveillance of standardized and consistent data and reporting processes will bridge the gap to reliably determine the burden of AMR in the region.