

Invasive aspergillosis in febrile neutropenia

Dr Tan Ban Hock Senior Consultant Infectious Diseases and Internal Medicine Singapore General Hospital Singapore

Disclosures

In the past three years, Dr Tan has served on the advisory boards of Pfizer and MSD.

Lecture outline

- Presented at MMTN August 4-6 2023. All rights reserved. Copyright of speaker. All rights

Risk of IA, by underlying disease

Herbrecht R et al. Ann NY Acad Sc 2012;1272:23

Gruhn JG et al. Cancer 1963;16:61

Impact of IA on leukemia survival

- Next chemotherapy course delayed in 57% of IA pts, vs 20% of controls (p<0.001)
 Chemotherapy was changed in 29% of IA cases (vs 8%) of controls

Impact of IA on leukemia survival

					023
Characteristics	1989-1993	1994-1998	1999-2003	2004-2008	p
Autopsies per 100 deaths	0.63	0.35	0.27	0.06	P<0.001
IFI prevalence	0.32	0.30	0.31 V	0.19	P<0.001
Severe neutropenia	90%	81%	70%	36%	P<0.001
Hi-dose steroids	19%	65%	50%	84%	P<0.001
IFI evident only at autopsy	84%	66% K	68%	49%	P<0.001
IFI as cause of death	77%	5Y 81%	73%	49%	P<0.001
IFI b'thru on antifungals	10%	71%	64%	56%	P<0.001
	2				

80

C.047.

					006	4	
Characteristics	1989-1993	1994-1998	1999-2003	2004-2008	p	~1e0	*
Autopsies per 100 deaths	0.63	0.35	0.27	0.06	P<0.001		IFIs are less
IFI prevalence	0.32	0.30	0.31	0.19	P<0.001		found at
Severe neutropenia	90%	81%	70%	36%	P<0.001		autopsies
Hi-dose steroids	19%	65%	50%	84%	P<0.001		
IFI evident only at autopsy	84%	66%	68%	49%	P<0.001		
IFI as cause of death	77%	54 81%	73%	49%	P<0.001		
IFI b'thru on antifungals	10%	71%	64%	56%	P<0.001		
r . White	2						

8

-03.

Lewis RE et al. Mycoses 2013;56:638

/ /

					02	э. Д
Characteristics	1989-1993	1994-1998	1999-2003	2004-2008	p	NeO.
Autopsies per 100 deaths	0.63	0.35	0.27	0.06	P<0.001	
IFI prevalence	0.32	0.30	0.31	0.19	P<0.001	
Severe neutropenia	90%	81%	70%	36%	P<0.001	
Hi-dose steroids	19%	65%	50%	84%	P<0.001	Getting better at
IFI evident only at	84%	66%	68%	49%	P<0.001	→ ante-mortem
autopsy		2000				ulughosis
IFI as cause of death	77%	81%	73%	49%	P<0.001	
IFI b'thru on antifungals	10%	71%	64%	56%	P<0.001	
r opyrig	2					

8

- 0

Lewis RE et al. Mycoses 2013;56:638

					02	3· 2
Characteristics	1989-1993	1994-1998	1999-2003	2004-2008	р	Neu.
Autopsies per 100 deaths	0.63	0.35	0.27	0.06	P<0.001	
IFI prevalence	0.32	0.30	0.31	0.19	P<0.001	
Severe neutropenia	90%	81%	70%	36%	P<0.001	
Hi-dose steroids	19%	65%	50%	84%	P<0.001	
IFI evident only at	84%	66%	68%	49%	P<0.001	
autopsy		near				
IFI as cause of death	77%	81%	73%	49%	P<0.001	COD
IFI b'thru on antifungals	10%	71%	64%	56%	P<0.001	
r · · · · · · · · · · · · · · · · · · ·	2					

80

נ ק

					02	3· 2
Characteristics	1989-1993	1994-1998	1999-2003	2004-2008	p	NeO.
Autopsies per 100 deaths	0.63	0.35	0.27	0.06	P<0.001	
IFI prevalence	0.32	0.30	0.31 V	0.19	P<0.001	
Severe neutropenia	90%	81%	70%	36%	P<0.001	
Hi-dose steroids	19%	65%	50%	84%	P<0.001	
IFI evident only at	84%	66%	68%	49%	P<0.001	
autopsy	da	nea.				Pt on antifungals
IFI as cause of death	11%	81%	73%	49%	P<0.001	→ still could be
IFI b'thru on antifungals	10%	71%	64%	56%	P<0.001	having IFI
COBALIE	2					

80

Dagenais TRT et al. Clin Microbiol Rev 2009;22:447

Diagnostic modalities

- R. C. Galactomannan (blood, csf) β-d-glucan (BDG) Aspergillus PCR Aspergillus PCR PET-CT
- -yy 62023. CXBL A-6 reserved. UOT scants reserved. MP MRI (sinuses/brain)

Clinical Infectious Diseases

MAJOR ARTICLE

Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium

- Recent neutropenia (ANC <500)
- Recipient (allo-HSCT/SOTx)
- Haematologc malignancy
- Prolonged steroids*
- Received T-cell suppressants
- Received B-cell suppressants
- Inherited immunodef (eg, CGD, STAT 3 def)

Pulmonary - any of the 4 CT features below Dense well-circumscribed nodule (± halo) Cavity Air crescent Wedge-shaped consolidation (segmental/tobar) Tracheobronchitis Ulcer Eschar

Pseudomembrane

Sinus, CNS disease - see article

Culture Any growth of Aspergillus from BAL/sputum/trach aspirate

Galactomannan

Single serum GM \ge 1 Single BAL GM \ge 1 Single serum GM \ge 0.7 with single BAL GM \ge 0.8

Aspergillus PCR

2 consec bld specimens positive BAL + in duplicate 1 bld and 1 BAL positive

Any of culture, GM or PCR

Detailed definitions in article *>0.3mg/kg/d for >3wk in prev 60d

Meta-analysis on serum GM for diagnosis of IA

Table 4. Pooled sensitivity	y and spec	ificity of the gal	actomanna	n assay for diag	gnosis of ir	ivasive aspergil	losis (IA)	Neu
Studies	TP/(TP+FP)	Cases of Pooled sensitivity (95% Cl)	proven IA	Pooled specificity (95% CI)	TP/(TP+FN)	Pooled sensitivity (95% Cl)	TN/(TN+FP)	IA Pooled specificity (95% Cl)
All	163/229	0.71 (0.68–0.74)	3601/4055	0.89 (0.88–0.90)	250/407	0.61 (0.59-0.63)	2839/3060	0.93 (0.92-0.94)
Studies limited to patients with hematological malignancy	106/152	0.70 (0.62–0.77)	2570/2808	0.92 (0.90-0.93)	177/304	0.58 (0.52-0.64)	2324/2457	0.95 (0.94-0.96)
Studies limited to patients undergoing BMT	49/60	0.82 (0.70-0.90)	722/843	0.86 (0.83-0.88)	32/49	0.65 (0.60-0.78)	17/26	0.65 (0.44–0.83)
Studies limited to solid-organ transplant recipients	2/9	0.22 (0.03-0.60)	180/215	0.84 (0.78–0.88)	9/22	0.41 (0.21–0.64)	210/247	0.85 (0.80–0.89)
Studies using EORTC/MSG criteria	74/116	0.64 (0.54–0.73)	2549/2869	0.89 (0.88–0.90)	211/354	0.60 (0.54–0.65)	2628/2823	0.93 (0.92–0.94)
Studies not using EORTC/MSG	89/113	0.79 (0.70-0.86)	1052/1186	0.89 (0.87-0.90)	39/53	0.74 (0.60-0.85)	211/237	0.89 (0.84-0.93)

Pfeffer CD et al. Clin Infect Dis 2006;42:1417

Meta-analysis on serum GM for diagnosis of IA

Studies involving adult population only	58/93	0.62 (0.52–0.72)	1211/1398	0.87 (0.85–0.88)	102/140	0.73 (.46-61)	802/889	0.90 (.88–0.92)	
Studies of both pediatric and adult populations	70/93	0.75 (0.65–0.84)	1726/1875	0.92 (0.91-0.93)	92/196	0.47 (0.40–0.54)	1601/1701	0.94 (0.93–0.95)	
Studies using a cutoff value of 0.5 for defining positivity	3/11	0.27 (0.06–0.61)	27/341	0.79 (0.74-0.83)	69/87	0.79 (0.69–0.87)	493/571	0.86 (0.83–0.89)	
Studies using a cutoff value of 1.9 for defining positivity	85/107	0.79 (0.71–0.87)	1385/1598	0.87 (0.85–0.88)	103/159	0.65 (0.57–0.72)	1163/1242	0.94 (0.92-0.95)	>
Studies using a cutoff value of 1.5 for defining positivity	75/111	0.68 (0.58-0.76)	1946/2116	0.92 (0.91–0.93)	78/161	0.48 (0.41–0.56)	1183/1247	0.95 (0.93–0.96)	
Prese Cop	yrigh	nt or sr	k.						

Meta-analysis on serum GM for diagnosis of IA

						- 202	3.	
Studies involving adult	59/02	0 62 (0 52 0 72)	1211/1200	0.97 /0.95 0.98	102/140	6 6	N60	0.00 (88, 0.02)
Studies of both pediatric and adult populations	70/93	0.75 (0.65–0.84)	1726/1875	0.92 (0.91=0.93)	92/196	0.47 (0.40-0.54)	1601/1701	0.94 (0.93-0.95)
Studies using a cutoff value of 0.5 for defining positivity	3/11	0.27 (0.06–0.61)	27/341	0.79 (0.74-0.83)	69/87	0.79 (0.69–0.87)	493/571	0.86 (0.83–0.89)
Studies using a cutoff value of 1.0 for defining positivity	85/107	0.79 (0.71–0.87)	1385/1598	0.87 (0.85-0.88)	103/159	0.65 (0.57–0.72)	1163/1242	0.94 (0.92–0.95)
Studies using a cutoff value of 1.5 fer defining positivity	75/111	0.68 (0.58-0.76)	1946/2116	0.92 (0.91–0.93)	78/161	0.48 (0.41–0.56)	1183/1247	0.95 (0.93, 0.00)
Drese	id	ntor						
COP	119							

Pfeffer CD et al. Clin Infect Dis 2006;42:1417

BAL GM – meta-analysis of 30 studies

80

Zou M et al. Plos One 2012;7:e43347

Zou (PloS One 2012) meta-anal for BAL GM

DOR - diagnostic odds ratio (single metric that incorp SEN, SPEC) **#Pooled**

Likelihood ratio - metric that incorporates SEN, SPEC. PLR >10, NLR <0.1 provide convincing evidence for and against diagnosis

Zou M et al. Plos One 2012;7:e43347

BDG

Of 25 bacteremic patients, 14 were BDG positive (only one, with concomitant candidemia, was a true +) Pickering JW et al. J Clin Microbiol 2005;43;5957 Can be falsely-positive in hemodialysis patients – depends on membrane Kanda H et al. Kidney Int 2001;60:319

GM more specific than BDG for IA diagnosis Bacteremic pts: false+ results much higher for BDG (37%) than GM (2%) Overall benefit of BDG limited due to lack of specificity and high cost

Sulahian A et al. J Clin Microbiol 2014;52:328

BDG in BAL – similar sensitivity to GM for IA, but poor specificity, poor reproducibility Rose SR et al. J Infect 2014;69:278

Many associations of false-positivity with blood products, likely because it elutes from cellulose membranes of filters

Nagasawa K et al. J Artif Organs 2003;6:49

- Recent neutropenia (ANC <500)
- Recipient (allo-HSCT/SOTx)
- Haematologc malignancy
- Prolonged steroids*
- Received T-cell suppressants
- Received B-cell suppressants
- Inherited immunodef (eg, CGD, STAT 3 def)
 Presenter

features below Dense well-circumscribed nodule (± halo) Cavity Air crescent Wedge-shaped consolitation (segmental/lohar) Vracheobronctrits Ner Eschar Plage Seudomembrane

Sinus, CNS disease - see article

Any growth of Aspergillus from BAL/sputum/trach aspirate

Galactomannan

Single serum GM \ge 1 Single BAL GM \ge 1 Single serum GM \ge 0.7 with single BAL GM \ge 0.8

Aspergillus PCR

2 consec bld specimens positive BAL + in duplicate 1 bld and 1 BAL positive

Any of culture, GM or PCR

BDG not part of the criteria

Donnelly JP et al. Clin Infect Dis 2019

Detailed definitions in article

*>0.3mg/kg/d for >3wk in prev 60d

Aspergillus PCR – early considerations

- How to interpret a positive result, since Aspergillus is ubiquitous in environment
 - Primer must be specific to aspergillus
 - → result in blood/serum or csf not a problem → most likely real (not 100% certainty coz small possibility of contamination of sampling tubes
- + result from BAL??
- Can be infection, colonization, bystander in inhaled air

How useful is the blood* PCR for IA diagnosis?

*Whole blood or serum Arvanitis M et al. J Clin Microbiol 2014;52:3731

How useful is the blood* PCR for IA diagnosis?

Meta-analysis of 25 studies (2595 pts)

- For single PCR positivity as gold standard
 - Pooled sensitivity was 849 (95%CI 75-91)
 - Pooled specificity was 76% (95%CI 65-84)

- If TWO positive PCR results needed to be considered positive,
 - Sensitivity was 64%
 - Specificity was 95%
 - Diagnostic Odds Ratio 12.8

For blood specimens, 2 positive PCRs can be considered highly indicative of invasive aspergillosis

Another meta-analysis supports 2 positives

	DOR (95% CI)	Sensitivity	Specificity	Likelihoo	d ratio
		(95% CI)	(95% CI)		
		JAUS	rights	Positive	Negative
One PCR-positive sample	22.11 (7.77-62.92)	0.88 (0.75-0.94)	0.75 (0.63–0.84)	3.53	0.15
Two PCR-positive samples	21-33(6-86-466-3)	0.75 (0.54-0.88)	0.87 (0.78–0.93)	6.04	0.28
DOR=diagnostic odds ratio.	ofspec	A *			

One negative PCR likely sufficient to exclude proven/probable IA TWO positive PCRs needed to rule the diagnosis in (improved specificity)

Mengoli C et al. Lancet Infect Dis 2009;9:89

PCR for screening – CDSR meta-analysis conclusions

- 19 cohorts published 2000 2013
- Majority had received chemotherapy for haematological malignancies or had undergone HSCT
- If single positive test used to define disease, out of 100 people with disease prevalence of 13%
 - 3 would be missed (sensitivity 80.5%, false-neg 19.5%) and 19 unnecessarily treated or sent for further tests (specificity 78.5%, false-positive 21.5%)
 Presented of SP
 Presented of SP

PCR for screening – CDSR meta-analysis conclusions

- 19 cohorts published 2000 2013
- Majority had received chemotherapy for haematological malignancies or had undergone HSCT
- If single positive test used to define disease, out of 100 people with disease prevalence of 13%
 - 3 would be missed (sensitivity 80.5%, false-neg 19.5%) and 19 unnecessarily treated or sent for further tests (specificity 78.5%, false-positive 21.5%)
- If 2 positive tests used to define disease, out of 100 people with disease prevalence of 13%,
 - 6 would be missed (sensitivity 58%, false-negative 42%) and 3 would be unnecessarily treated or sent for further tests (96.2% specificity, false-positive 3.8%)

Cruciani M et al. CDSR 2015; Issue 10. Art no. CD009551

Having access to both GM & PCR helps

Test (combination) and	Sensitivity	Specificity		- 03	Diagnostic odds
condition	(n = 16)	(n = 37)	PPV	NPV	ratio
PCR (BALF)	7/16 (43.8%)	37/37 (100%)	7/7 (100%)	37/46 (80.4%)	59.2[3.1–1,1132]
PCR (whole blood)	0/16 (0%)	37/37 (100%)	0/0 (0%)	37/37 (100%)	NA
GM 0.5 ODI (BALF)	6/16 (37.5%)	34/37 (91.9%)	6/9 (66.7%)	34/44 (77.3%)	6.8 [1.4-32.2]
GM 0.5 ODI (serum)	5/16 (31.3%)	37/37 (100%).	5/5 (100%)	37/48 (77.1%)	35.9 [1.8-699.3]
GM (BALF) 1.0 ODI	5/16 (31.3%)	35/37 (94.6%)	5/7 (71.4%)	35/46 (76.1%)	8.0 [1.3-46.9]
Culture (BALF)	3/16 (18.8%)	37/37 (100%)	3/3 (100%)	37/50 (74.0%)	19.44 [0.9-401.9]
GM 1.0 ODI (BALF) and/or GM	X16 (43.8%)	35/37 (94.6%)	7/9 (77.8%)	35/46 (79.6%)	13.6 [2.4–77.1]
0.5 ODI (serum)		1.01.			
PCR (BALF) and/or GM 0.5 ODI	10/16 (62.5%)	37/37 (100%)	10/10 (100%)	37/43 (86.1%)	121.2 [6.3–2332]
(serum)		ear			
PCR (BALF) and/or GM 1.0 ODI	10/16 (62.5%)	35/37 (94.6%)	10/12 (83.3%)	35/41 (85.4%)	29.2 [5.1–167.5]
(BALF)	* O'				
PCR (BALF) and/or GM 1.0 ODI	11/16 (68.8%)	35/37 (94.6%)	11/13 (84.6%)	35/40 (87.5%)	38.5 [6.5-227.1]
(BALF) and/or GM 0.5 ODI					
(serum)					
PCR (BALF) and/or GM 1.0 ODI	12/16 (75.0%)	35/37 (94.6%)	12/14 (85.7%)	35/39 (89.7%)	52.5 [8.5-324.0]
(BALF) and/or culture (BALF)					
and/or GM 0.5 ODI (serum)					

Eigl S et al. Med Mycol 2017;55:528

Having access to both GM & PCR helps

Test (combination) and	Sensitivity	Specificity		- 03	Diagnostic odds
condition	(n = 16)	(n = 37)	PPV	NPV	ratio
PCR (BALF)	7/16 (43.8%)	37/37 (100%)	7/7 (100%)	37/46 (80.4%)	59.2[3.1-1,1132]
PCR (whole blood)	0/16 (0%)	37/37 (100%)	0/0 (0%)	37/37 (100%)	NA
GM 0.5 ODI (BALF)	6/16 (37.5%)	34/37 (91.9%)	6/9 (66.7%)	34/44 (77.3%)	6.8 [1.4-32.2]
GM 0.5 ODI (serum)	5/16 (31.3%)	37/37 (100%)	5/5 (100%)	37/48 (77.1%)	35.9 [1.8-699.3]
GM (BALF) 1.0 ODI	5/16 (31.3%)	35/37 (94.6%)	5/7 (71.4%)	35/46 (76.1%)	8.0 [1.3-46.9]
Culture (BALF)	3/16 (18.8%)	37/37 (100%)	3/3 (100%)	37/50 (74.0%)	19.44 [0.9-401.9]
GM 1.0 ODI (BALF) and/or GM	7/16 (43.8%)	35/37 (94.6%)	7/9 (77.8%)	35/46 (79.6%)	13.6 [2.4-77.1]
0.5 ODI (serum)		1.01.			
PCR (BALF) and/or GM 0.5 ODI	10/16 (62.5%)	37/37 (100%)	10/10 (100%)	37/43 (86.1%)	121.2 [6.3–2332]
(serum)		ear			
PCR (BALF) and/or GM 1.0 ODI	10/16 (62.5%)	35/37 (94.6%)	10/12 (83.3%)	35/41 (85.4%)	29.2 [5.1-167.5]
(BALF)	× 0`				
PCR (BALF) and/or GM 1.0 ODI	11/16 (68.8%)	35/37 (94.6%)	11/13 (84.6%)	35/40 (87.5%)	38.5 [6.5-227.1]
(BALF) and/or GM 0.5 ODI					
(serum)					
PCR (BALF) and/or GM 1.0 ODI	12/16 (75.0%)	35/37 (94.6%)	12/14 (85.7%)	35/39 (89.7%)	52.5 [8.5-324.0]
(BALF) and/or culture (BALF)					
and/or GM 0.5 ODI (serum)					

Eigl S et al. Med Mycol 2017;55:528

Why?

- Reason as pointed out:
- We have limited data on relationship between the release of fungal biomarkers and the stage(s) of disease
- Combination testing gives us opportunity to detect biomarkers that are differentially released at different stages of infection
 Presented at speaker
 Presented of speaker

Radiology Presented at MMTN August 4-6 2023. All rights reserved. Copyright of speaker. All rights

000

Nodules in IPA – how they change with time

Volume of nodule changes with time

* Wilcoxon's test on absolute changes (cm3).

Increase in size with treatment augurs well

- Patients with favorable outcome had lesions of bigger total volume than those with an unfavorable outcome nte resel
- ...анкег of early BM recovery) Neutrophil recovery, improved ability to mount an immune response

20 days later

Brodoefel H et al. AJR 2006;187:404

Halo sign – observed in 87.5% on Day 1

Median duration 5 days (mean 8, r 1 - 30)

Prevalence of halo

Day 4 – 62.5%

Day 8 - 37%

Day 16 – 17.5%

Crescent sign Day 4 – 5% Day 8 – 10% Day 16–25% Day 32 – 45% Cavities

Developed in 55% Some have multiple cavitations

Median time to appearance of cavity – 21 (range 6-91)

80

Computed Tomographic Pulmonary Angiography for Diagnosis of Invasive Mold Diseases in 73. Patients With Hematological Malignancies

of a vessel at the border of a focal lesion, without Needs to be present at least once in a patient depiction of the vessel inside or peripheral to the lesion

а

Stanzani M et al. CID 2012;54:610

8

served.

c: false+ (MSSA)

D: true neg (bacterial pneumonia)

Treatment approaches

Antifungal prophylaxis in haematological malignancies

-	Population	Intention	Intervention	SoR	QoE	Comment
-	Haematological malignancies, e.g. AML with prolonged and profound neutropenia	Lower incidence of IA	Posaconazole 200 mg tid suspension or 300 mg tablet qd	A	I	AML/MDS induction only. TDM especially with oral suspension. Tablets more bioavailable, bridging with posaconazole IV formulation. possible
			L-AmB 12.5 mg 2 ×/weekly, nebulized,	В		AML
			with undetermined dose of fluconazole			
			ABLC 3 mg/kg 3 ×/weekly	C	IIh	No difference to L-AmB regimen
			Micafungin 50 mg qd	C	II _t	+C
			L-AmB 10 mg/kg q7d	C	II _u	212
			L-AmB 50 mg abs q2d	C	IIu	
			L-AmB 15 mg/kg q14 d	C	IIu	
			Voriconazole	C		Not better than fluconazole
			Itraconazole 400 mg/day, oral solution	D	п	No difference to fluconazole
				_		(n = 195) and more toxicity
	Acute lymphoblastic leukaemia,	Lower	L-AmB 5 mg/kg biw	D	I	L-AmB more toxic than placebo, no
	remission induction chemotherapy	incidence of IA		D		significant reduction in IA rate
	Autologous HSCI or treatment of	Lower	Any mound active agent	D	m	
	naematological malignancies besides	incidence of IA	2.01			
	Allogeneic HSCT (until neutrophil	Lower	Posaconazole 200 mg tid suspension or	R	п	Neutropenia duration
	recovery	incidence of IA	300 mg tablet ad	D	int .	approximately identical TDM
	(contrast)		L-AmB 12.5 mg hiw nebulized with	R	п	approximately identical, rom
			fluconazole	5		
0	5 1010		Voriconazole 200 mg bid	С	I	Not better than fluconazole, TDM
C	: dil		Micafungin 50 mg/day	C	Î.	But no difference in subgroup
						analysis for aspergillosis
			Itraconazole 400 mg/day oral solution	D	I	Toxicity issues; TDM
	Allogeneic HSCT (after neutrophil		Any antifungal agent	D	ш	No study demonstrated outcome
~ (recovery and no GvHD)					advantage
	Allogeneic HSCT (with moderate to		Posaconazole 200 mg tid suspension or	Α	I	TDM
	severe GvHD and/or intensified		300 mg tablet qd			
	immuno-suppression)		Voriconazole 200 mg bid	C	п	Not better than fluconazole; TDM
			Itraconazole 400 mg/day, oral solution	C	п	Toxicity issues; TDM
			Micafungin 50 mg/day	C	Ш	Only few patients with GVHD

1

Ullmann AJ et al. Clin Microbiol Infect 2018;24:e1

Antifungal prophylaxis in haematological malignancies

	Population	Intention	Intervention	SoR	QoE	Comment
	Haematological malignancies, e.g. AML with prolonged and profound neuropeoia	Lower incidence of IA	Posaconazole 200 mg tid suspension or 300 mg tablet qd	A	I	AML/MDS induction only, TDM especially with oral suspension. Tablets more bioavailable, bridging
						possible
			L-AmB 12.5 mg 2 ×/weekly, nebulized,	B	I	AML
			with undetermined dose of fluconazole			
			ABLC 3 mg/kg 3 ×/weekiy Micafungin 50 mg ad	9	-IIh II	No difference to L-Amb regimen
			L-AmB 10 mg/kg n7d	č	11t	
			L-AmB 50 mg abs g2d	C*	H.	
			L-AmB 15 mg/kg q14 d	C	u,	
			Voriconazole	C	IL.	Not better than fluconazole
			Itraconazole 400 mg/day, oral solution	D	П	No difference to fluconazole
				-		(n = 195) and more toxicity
	Acute lymphoblastic leukaemia,	Lower	L-AmB 5 mg/kg biw	D	1	L-AmB more toxic than placebo, no
	Autologous HSCT or treatment of	Lower	Any mould active agent	D	ш	significant reduction in iA fate
	haematological malignancies besides	incidence of IA	Any mount active agent	2		
	acute leukaemia		20.			
	Allogeneic HSCT (until neutrophil	Lower	Posaconazole 200 mg tid suspension or	В	IIt	Neutropenia duration
	recovery)	incidence of IA	300 mg tablet qd			approximately identical, TDM
			L-AmB 12.5 mg biw, nebulized, with	В	IIt	
	and the	*	fluconazole	~		Not have also do an a man
71			Voriconazole 200 mg bid	C	1	Not better than fluconazole, TDM
			Micalungin 50 mg/day	C	1	analysis for aspergillosis
			Itraconazole 400 mg/day oral solution	D	I.	Toxicity issues: TDM
	Allogeneic HSCT (after neutrophil		Any antifungal agent	D	in l	No study demonstrated outcome
	Recovery and no GVHD)					advantage
	Allogeneic HSCT (with moderate to		Posaconazole 200 mg tid suspension or	Α	I	TDM
	severe GVIID and/or intensified		300 mg tablet ad	~		
	immuno-suppression)		Voriconazole 200 mg bid	C	11	Not better than fluconazole; TDM
			Itraconazole 400 mg/day, oral solution Micafungin 50 mg/day	c	н ш	IOXICITY ISSUES; IDM Only few patients with CVHD

Ullmann AJ et al. Clin Microbiol Infect 2018;24:e1

Posaconazole vs. Fluconazole or Itraconazole Prophylaxis in Patients with Neutropenia

Olivar A. Cornely, N.D., Johan Maertens, M.D., Drew J. Winston, M.D., John Parfect, M.D., Andrew J. Ullmahn, M.D., Thomas J. Walsh, M.D., David Helffott, M.D., Jerzy Holowincki, M.D., Dick Stockelberg, M.D., Yecow-Tee Goh, M.D., Mario Petrini, M.G., Cathy Hardalo, M.D., Ramachandran Suresh, Ph.D., and Duvid Angulo-Gonzalez, M.D.*

Figure 1. Kaplan–Meier Curves for Time to Invasive Fungal Infection (Panel A), Death from Any Cause (Panel B), and Invasive Fungal Infection or Death (Panel C) over the 100-Day Period after Randomization.

G

P values were estimated with the log-rank test. Data were censored on the last date of contact or on day 100 after randomization, whichever was sooner.

Caspofungin versus Liposomal Amphotericin B for Empirical Antifungal Therapy in Patients with Persistent Fever and Neutropenia

Head-to-head comparison – empiric vs pre-emptive approach

Pre-emptive arm received caspofungin less often

	Arm A – Empiric (N = 275)	Arm B – Pre-emptive (N = 274)	160.b
No. of subjects given caspofungin per protocol	173 (63%)	5USL 73 (27%) 05	<0.001
Proven/probable aspergillosis (all participants)	at Ma (6.6%)	21 (7.7%)	0.61
Presented Copyright	ofsp		

Maertens J et al. Clin Infect Dis 2023;76:674

Empirical or pre-emptive – no survival difference

Overall survival at day 42: Arm A: 93.1% (95% CI, 89.3-95.5%) and Arm B: 96.7% (95% CI, 93.8-98.3%)

Maertens J et al. Clin Infect Dis 2023;76:674

There is not one approach that suits all patients, and different of discourses strategies are required for different patient groups depending on Barnes R, Rogers T and Maertens J. J Antimicrob Chemother 2019;74: sup 2: ii21

Targeted therapy

ESCMID guide (aspergillosis)

Targeted therapy of pulmor	nary disease—fii	rst line		٨	6	F	nleu.
Population	Intention	Intervention	SoR	QoE ¹	QoE ²	QoE ³	Comment
 Neutropenia (non- allo HSCT recipients) Allo-HSCT (during 	To increase response and survival rate	Isavuconazole 200 mg IV tid day 1–2, then 200 mg qd oral	حم	Ĩ	^{II} tS	n, O	D III, if mould active azole prophylaxis fewer adverse effects than voriconazole
neutropenia) 3] Allo-HSCT (w/o neutropenia) or		Voriconazole 2× 6 mg/kg IV (oral 400 mg bid) on day 1, then 2–4 mg/kg IV (oral 200–300 mg bid)	A	12	IIt	IIt	C III for start with oral; D III, if prior mould active azole prophylaxis; TDM
other non- neutropenic		L-AmB 3 mg/kg Combination of voriconazole 6/4 mg/kg	B C	II I	II _t II.	II _t II.	No significant difference
patients	nted	bid (after 1 week oral possible (300 mg bid)) + anidulafungin 200/100 mg	-		,	,	compared to voriconazole, in GM-positive (subgroup) better survival; TDM
Pres	right						

~n23. d

80

Herbrecht R et al. N Engl J Med 2002;347:408

Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial

	ISV	VRC /	95% CI
All-cause mortality		aust	res
ITT 42d ACM	19%	20%	7 -1 (-7.8 to 5.7)
ITT 84d ACM	29%	31%	-1.4 (-9.2 to 6.3)
mITT 42d ACM	20%	23%	-2.6 (-12.2 to 6.9)
mITT 84d ACM	SO30%	37%	-5.5 (-16.1 to 5.1)
myITT 42d ACM	19%	22%	-2.7 (-12.9 to 7.5)
myITT 84d ACM	28%	36%	-5.7 (-17.1 to 5.6)

ITT all who were enrolled, randomly assigned & received at least 1 dose of study drug

mITT: all ITT patients with proven or probable IMD

myITT: subset of mITT patients with proven or probable IA

ACM: all-cause mortality

000

1

ISV vs VRC – safety data

	ISV	VRC	6204
Skin	33%	42%	0.037
Rash	7%	11%	10 ⁵
Erythema	4%	6%	12
Eye	15%	27%	0.002
Impairment,	2%	7%	
Photophobia	03.1%	2%	
Psyter fS	27%	33%	0.1515
Hallucinations	2%	4%	
Hepatobiliary	9%	16%	0.016
<pre></pre>	2%	4%	

Lancet 2016; 387: 760-69

Why VRC + ANF got a C

80

Marr KA et al. Ann Intern Med 2015;162:81

VRC + ANF cut death in GM+ sub-group

Figure 3. Outcomes in the positive galactomannan subgroup.

Posaconazole vs voriconazole for IA

A: ITT population; B: Full analysis set (ie, ITT with proven/probable IA) Marttens JA et al. *Lancet* 2021;397:499

Summary

- Great strides have been made against aspergillosis .
- Neutropenia and steroids are biggest risk factors
- 20:20. With diagnostic tools and drugs, one can develop different approaches to • the prevention, diagnosis and treatment of aspergillosis
- Prophylaxis is an option in the highest-risk haematological patients
- The approach to prolonged fever in neutropenia is an approach to possible invasive fungal diseases

Thank you