

Updates on Molecular Tests & PCR

Catriona Halliday PhD Clinical Mycology Reference Laboratory – ICPMR, NSWHP Westmead Hospital, Australia

Disclosures

Presented at MMTN August 4-6 2023. All rights reserved. Copyright of speaker. All rights ۲

Culture Independent Diagnosis

- Fungal biomarkers surrogate markers of IFD ۲
 - 1.
 - Fungal antigens β -D- glucan, *Aspergillus* galactomannanger adjunct for early diagnosis 2.
- Useful adjunct for early diagnosis ۲
- Incorporated into care pathways & diagnostic algorithms
 - Steward & monitor antifungal therapies
 - Predict treatment outcomes Ο
 - EORTC/MSGERC consensus definitions (Donnelly, CID, 2020) 0

PCR-based Assay Strategy

- 1. Rule out particular IFD
 - Screening test in asymptomatic patients Utilizes a high NPV
 - Pre-emptively diagnose in high-risk patient 8=10% incidence (not cost effective in patients with lower incidences)
 - Requires frequent testing (e.g., blood)
 - Ideally TAT 24-48h; short enough to impact patient management
- 2. Support in a diagnosis ("Upgrade" category of IFD)
 - Enable a definite diagnosis in patients with signs and symptoms of infection
 - Pre-test probability increased

Kidd et al., Front Microbiol, 2020; Barnes et al., Med Mycol., 2018

Aspergillus PCR for Diagnosis

- Accepted as mycological criterion for probable IA
 - Blood (serum, plasma, whole blood); ≥2 consecutive PCR +ve tests
 - BAL fluids; ≥2 duplicate PCR +ve results
 - ≥1 PCR +ve blood (serum/plasma/whole blood) AND 1 PCR +ve BAL fluid
 (Donnelly et al, CID 2020; White et al CID 2021)
- Provides robust diagnostic test for:
 - Screening patients at moderate-high risk of IA
 - Confirming diagnosis of *Aspergillus* infection
 - (Cruciani et al. Cochrane Databases Syst Rev 2019, 9:CD009551)

Aspergillus PCR Technical Considerations

- Specimen volume, nucleic acid extraction protocol & elution volume critical to PCR assay performance
 - \circ ≥3 mL whole blood; ≥0.5 mL serum/plasma
 - Mechanical disruption of cell wall required for efficient NA extraction
 - Elution volume ≤100 μL
- PCR assay not rate-limiting to success
 - Multi-copy gene target enhances sensitivity (28S rRNA or ITS)
 - Pan-Aspergillus target preferred
 - Recommend PCR testing in duplicate
 - qPCR minimises contamination

Commercial Aspergillus PCR Assays

- Numerous commercial assays available (Rath & Steinmann, Front Microbiol, 2018) ۲
 - Provide standardised methodology & independent QC of reagents
 - Significantly lower sensitivities in serum vs respiratory specimens Ο
 - Limited data on clinical utility & head-to-head comparisons
 - Some assays detect prevalent cyp51A gene mutations conferring azole resistance

Aspergillus PCR

- Negative PCR result can exclude IA in antifungal drug haive patients + v reserved.
- Positive PCR result is useful for diagnosis
- • Positive result from BALF cannot distinguish colonisation from IA

Detection of Azole Resistance by PCR

- Performance of 3 commercial assays evaluated on BAL (n=103)
 - MycoGENIE[®] Aspergillus fumigatus real-time PCR kit (Adamtech)
 - Fungiplex[®] Aspergillus Azole-R IVD real time PCR kit (Bruker Daltonik)
 - AsperGenius[®] (PathoNostics)

Probable IPA (n=11) vs possible (n=51) /no IPA (n=41)

Kit	Sensitivity	Specificity	PPV	NPV
MycoGENIE [®]	80%	73.2%	26.7%	96.8%
Fungiplex®	60%	91%	42.9%	95.4%
AsperGenius [®]	ri9 63.6%	96.7%	70%	95.7%

• Only 1 azole-resistant isolate (TR34 mutation) detected by all three assays

Scharmann et al. J Fungi, 2021; Pelzer et al. Med Mycol, 2020

Mucorales PCR

- Incidence of mucormycosis is increasing due to: ۲
 - Ο
 - Ο
 - Increase in number of susceptible people Change in antifungal practice Improved diagnostics (PCR from culture negative tissue, BALF, serum & urine) Ο
- Early diagnosis is key to improving survival outcomes Resented at speaker Presentiont of speaker COPY ۲

Mucorales PCR for Diagnosis

- Detection in fresh or FFPE tissue resulted in increase in diagnosed cases
 - Sensitivities of 97–100% on fresh tissue & 56–91% on FFPE
- Aids diagnosis of pulmonary mucormycosis from BALF
 - PCR +ve in all 10 patients with proven/probable disease
 - PCR earliest and/or only biological evidence of disease in 4 patients
 - o 6 of 24 patients (25%) co-infected with Aspergillus-Mucorales
 - Supports inclusion in diagnostic approach despite difficulty obtaining BALF (Scherer et al, JCM 2018)

Mucorales PCR for Screening

MODIMUCOR Prospective trial (Millon et al, CID, 2022)

- Assess performance of serum Mucorales qPCR for early diagnosis of mucormycosis
- 232 patients enrolled prospectively, 2x weekly screening of serum
- o qPCR targets Lichtheimia, Rhizomucor & Mucor/Rhizopus
- Sensitivity, 85.2%; specificity, 89.8%, PLRz, 8.3; NLR, 0.17
- PCR +ve from serum 4 days before mycological/histopathological examination, 1 day before 1st imaging performed
- -ve PCR within 7 days of L-AMB associated with 85% lower 30-day mortality
- Argues for inclusion in EORTC/MSGERC definitions

Commercial Mucorales PCR Assays

	MucorGenius [®] Real-Time PCR	MycoGENIE [®] Aspergillus Species—Mucorales Species	Fungiplex [®] Mucorales RUO PCR Kit
Diagnostic specimens	Bronchoalveolar lavage Biopsy samples, paraffin embedded Serum	Serum Biopsies Lower respiratory tract samples	Sev Not specified
Species detected	Rhizopus spp. Mucor spp. Lichtheimia spp. Cunninghamella spp. Rhizomucor spp.	Rh. Pusillus M. indicus M.circimelloides M.plombeus R. arrhizus R. stolonifera L. corymbifera L. glauca C. bertholletiae Mycotypha sp.	Rhizopus spp. Lichtheimia spp. Cunninghamella spp. Rhizomucor spp. Mucor spp. Actinomucor spp. Apophysomyces spp. Saksenaea spp. Syncephalastrum spp.
Manufacturer	PathoNostics	Ademtech	Bruker
Pres	pyright		

Dannaoui, J Fungi 2022, 8, 457

MucorGenius[®] Mucorales RUO

- Detect clinically relevant Mucorales species in ~3 h •
- •

- Sensitivity on serial blood 75%, preceded • microbiological diagnosis (Mercier et al. J Fungi, 2019)
- Lower analytical sensitivity to in-house assay & decreased detection of Lichtheimia corymbifera (J Fungi 2022, 8, 786)

Panfungal PCR

- stases reserved. Detect & identify "all" fungi from diverse specimen types •
 - ITS or 28S are recommended targets Ο
 - BLAST sequences against guality-controlled databases Ο
- Best results from sterile specimens (not BALF) ۲ (Zeller et al. J Microbiol, 2017; Garnham et al. Pathology, 2020)
- Detect novel or unexpected pathogens
 - 44% (8/18) +ve with non-Aspergillus/Candida species Ο (Sugaware et al. Eur J Haematol, 2013)

Panfungal PCR for Diagnosis

EORTC/MSGERC recommend use of PCR & DNA sequencing for genus/species reserved ID from fresh/FFPE tissue

- ONLY when fungal elements seen by histopathology Ο
- NOT recommended where fungal staining is negative. Ο
- Identification **MUST** be consistent with histopathological features
- Rigorous quality control (+ve, -ve & internal control)
- PCR should target fungal barcoding genes (ITS or 28S)
- Every PCR product should be sequenced
- Performed ONLY in reference centres or high-volume centres
- Fulfil criteria of PROVEN fungal disease

Panfungal PCR on Tissue

- Diagnostic yield increases with pre-test probability ۲
 - served. 71.3% patients with proven/probable IFD (variety of specimens) Ο

 - , si .J% open resection; .J% open resection; All right All right Presented at speaker. Yield from biopsy specimens: 71.5% open resection; 50% core-needle; 0% FNA

Panfungal PCR on Tissue

- Limited utility on histopathology negative FFPE (n=248)
 - 28% (69/248) yielded invalid result (no HBG)
 - 18% (45/248) positive histology; 49% (22/45) positive PCR; 36% (16/45) clinically significant PCR result
 - 9% (19/203) histology negative yielded positive PCR; 3% (6/203) clinically significant PCR result
 - AU\$258 histopathology positive vs AU\$3105 histology negative
 - Panfungal PCR on histopathology negative FFPE tissue NOT recommended (Sparks et al, *Pathology*, 2023)

Panfungal PCR on BALF

- Interpretation difficult Infection, colonisation or environmental contamination?
 - Candida, Saccharomyces, Rhodotorula & "mixed" most frequently detected (Trubiano et al Med Mycol, 2016; Rahn et al J Med Micro, 2016)
- Sensitivity lower in patients receiving mould-active treatment Negative does not exclude IFD
- Diagnostic utility & costs (Gamham et al Pathology, 2020)
 - o 53% (530/1,002) yielded positive; 8.5% (45/1,002) clinically significant
 - Recommend > pre-analytical stewardship limit to high-risk (neutropenic) patients with clinical/radiological evidence of IFD

Pneumocystis jirovecii PCR Assays

- Increasingly used by diagnostic labs
- Detect colonisation, asymptomatic infection, sub-clinical & active infection correlate +ve PCR with clinical, radiological & laboratory findings (Doyle et al, OFID, 2017)

"Affords discrimination of early true disease vs rarer instances of colonisation"

- ECIL guidelines recommend real-time PCR for routine diagnosis of PCP (Alanio et al, JAC, 2016)
 - BALF best specimen (A-II)
 - Yield from BALF > induced sputum > oropharyngeal wash

Pneumocystis jirovecii PCR Assays

- PCP qPCR incorporated into EORTC/MSGERC criteria
 - Mycological evidence of pneumocystis from BALF, IS or OW
 - Do NOT recommend threshold for positivity
- Numerous commercial assays available excellent concordance with in-house assays (Sasso et al, *JCM*, 2016; Huh et al, *Ann Lab Med*, 2019)
- FPCRI pneumocystis working group
 - Establish consensus method
 - Assist with lab standardisation & quantification
 - Recommend SSU or mitochondrial LSU

Candida PCR

- Fulfils many of criteria for "ideal diagnostic test for IC" Sensitive (<5 CFU/ml) Minimally invasive sampling
 Multiplex capability Provides speciation
 Rapid TAT +ve before culture
- Utility not clearly defined Use differs in different clinical contexts
- Lacks standardisation & limited validation in real-life prospective settings FPCRI developing standard

Commercial Candida PCR Assays

Product	Manufacturer	Species Targeted
AusDiagnostics Sepsis	AusDiagnostics Pty Ltd	C. albicans, glabrata, krusei, parapsilosis & tropicalis
CandID & AurisID	OlmDiagnostics	C. albicans, dubliniensis, glabrata, krusei, parapsilosis & tropicalis; C. auris
FungiPlex <i>Candida</i> & FungiPlex <i>Candida auris</i>	Bruker Daltonik	C. albicans, dubliniensis, glabrata, krusei, parapsilosis & tropicalis; C. auris
Magicplex Sepsis Real-time Test	Seegne SOE3KE	C. albicans, glabrata, krusei, parapsilosis & tropicalis (and A. fumigatus)
MycoReal Candida Service	Ingenetix	C. albicans, dubliniensis, glabrata, krusei, Iusitaniae, parapsilosis & tropicalis
SeptiFast Real-time PCR	Roche Diagnostics	C. albicans, glabrata, krusei, parapsilosis & tropicalis
T2 Candida T2 C. auris	T2 Biosystems	<i>C. albicans/tropicalis</i> , <i>C. glabrata</i> cx/ <i>krusei</i> and <i>C. parapsilosis</i> cx; <i>C. auris</i>

Cryptococcus PCR

- Commercial assays:
 - reserved. BioFire FilmArray Meningitis/Encephalitis panel (bioMerieux) Ο
 - AusDiagnostics Atypical Pneumonia & CSF panels Ο
 - Limited to certain specimens (CSF & BALF)
 - Sub-optimal sensitivity due to substantial multiplexed nature
 - Cannot discriminate C. neoformans from C. gattii
- Real-time targeted PCR to detect & identify C. neoformans & C. gattii from sterile & non-sterile specimens (Tay et al, J Fungi, 2022)

Cryptococcus PCR

High resolution melt-curve analysis discriminates between 2 species (Tay et al *J Fungi*, 2022)
 C. neoformans (81°C) & C. gattii (79°C)
 BI: VII - B

Conclusions

- Important advances in standardisation of PCR tests incorporated into EORTC/MSGERC criteria
- PCR tests are NOT standalone tests valuable "add on" tools which fulfil diagnostic gaps
 - Must optimise test algorithms
- MUST be interpreted in clinical context of patient & other findings
- Risk factor stratification predict individuals at greatest risk

Thank you