

REGIONAL MMTN CONFERENCE 2023

Asia Pacific Medical Mycology Training Network (MMTN) Conference

WHO Fungal Pathogens: priority list, focus on research

Sharon Chen

Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, NSW, Australia

www.wslhd.health.nsw.gov.au/CIDM-PH

DISCLOSURES

- Untied educational grants from MSD Australia, F2G Ltd.
- Manchester, UK
 Antifungal Advisory Board of MSD Australia, Gilead Sciences Juard of MSD A Ltd. Speakers Fees, Gilead Sciences, Inc.

Agenda

- Key findings from the WHO Fungal Pathogens Priority List (EPPL) developed using predefined criteria: ust 4
 - Mortality, hospitalised care
 - Complications and sequelae
 - o In vitro susceptibility, risk factors, preventability,
 - annual incidence, global distribution
- Broad perspective (my own!): mould pathogens
- Focus on clinical needs and research

Emerging AMR

Candida auris

- Often multidrug resistant
- Resistant to standard infection control procedures
- resem • C. auris 1st reported in Japan in 2009, since then in S >55 countries
- Where did it come from?

Azole resistant Aspergillus fumigatus

- Emerged over the last decade
- Worse clinical outcomes
- Driven by environmental agricultural contamination
- Rates seem very high in areas of China and SE Asia (90%!)

WHO response

Commissioned a FFPL to:

- direct R&D efforts towards pathogens with greatest gaps in knowledge;
- define R&D priorities to align investments and funding with unmet needs;
- enable international co-ordination in R&D to innovate new, and optimize existing therapeutics and diagnostics
- facilitate regular review of antifungal development pipeline for trends and gaps

Photos credit: Ana Alastruey-Izquierdo, Instituto de Salud Carlos III , Spain

Slide: Dr. J. Beardsley, with thanks

Ranking process Slide: Dr. J. Beardsley, with thanks

Pathogens to be prioritized

Assessment criteria

1.	A. fumigatus	12. Histoplasma	Deaths	Average case fatality, guideline
••	julia			recommended treatment
2.	C. albicans	13. L. prolificans	Inpatient care	Average length hospital stays for
2	C. currie		× D	treatment, following initial diagnosis
3.	C. auris	14. Mucorales	Complications	Proportion of patients suffering long-
4.	C. glabrata	15 Mycetoma	and sequelae	term complications from disease
_		(invasivo)	Antifungal	Rate (or level) acquired or intrinsic
5.	C. Krusei	(iiivasive)	resistance	resistance
6.	C. parapsilosis	16. Paracoccidioides	Preventability	Transmission/acquisition dynamics
•		17-0-10-001		evidence based <u>effective</u> , preventive
7.	C. tropicalis	M.R. Jirovecii		measures
8	Coccidioides	18. Scedosporium	Incidence (p.a.)	No. <u>new cases/10⁶ population/year</u>
0.		riolli	Access to Dx	Availability of diagnostics
9.	C. gattii	19. T. marneffei	Evidence-based	Treatment options are evidence based
10	C neoformans		treatment	and accessible
10.	o. neorormans		Current global	Extent global geographic distribution
11.	Fusarium		distribution	
			Trends 10 years	Change in incidence/prevalence

FPPL ranking process

Describe pathogens in terms of pre-selected criteria

Assign pathogens to pre-specified levels for all criteria

- Systematic review
- Blinded allocations

- Expert opinion where needed

Discrete choice experiment (DCE) among large international cohort of mycology experts - Informs the multicriteria decision analysis

R&D Rank

Determine importance of the criteria

Each pathogen is scored according to - allocated levels for each criteria

- multiplied by the importance weight from DCE

PH Rank

Each pathogen ranked indirectly via DCE

- Experts determine relative importance of R&D need and PH importance

Slide: Dr. J. Beardsley, with thanks

Fig. 3. Overall pathogen rankings

WHO FUNGAL PRIORITY PATHOGENS LIST TO GUIDE RESEARCH, DEVELOPMENT AND PUBLIC HEALTH ACTION

Plot showing how pathogens were ranked across three stages of MCDA. From left to right: 1. pathogen ranking based on DCE survey for R&D priorities; 2. pathogen ranking based on BWS scaling survey for public health importance; 3. overall combined ranking. Respondents in the BWS applied the relative importance weights of 0.48 for R&D need and 0.52 for public health

FPPL findings

Public health importance strong determinant of priority: survey respondents favored public health importance over unmet R&D

Antifungal resistance top priority: respondents gave highest weighting to antifungal resistance when prioritising R&D need

Disease-burden-related criteria ranked highly: amongst the highest weightings for relative importance in the R&D survey.

Systematic reviews: major knowledge gaps on global IFD burden and disability outcomes. Drug resistance data extensive but inconsistent.

Global Vs. Endemic: invasive fungal pathogens vary significantly by

region.

WHO: systematic reviews FPPL unpublished (July 21 2023)

WHO FPPL: final

Critical Group	High Group	Medium Group
Cryptococcus neoformans	Nakaseomyces glabratus (Candida glabrata)	Scedosporium spp.
Candida auris	Histoplasma spp. AU9 right	Lomentospora prolificans
Aspergillus fumigatus*	Eumycetoma causative agents	Coccidioides spp.
Candida albicans	Mucorales	Pichia kudriavzevii
Pres	<i>Fusarium</i> spp.	Cryptococcus gattii
Cobi	Candida tropicalis	Talaromyces marneffei
~	Candida parapsilosis	Pneumocystis jirovecii
		Paracoccidioides spp.

Aspergillus sections (human infection, n>14)

JLI	(IL)		
Section Species	complex	Species	Comment .
Fumigati A. fumig	gatus	A. fumigatus sensu stricto	Grows at 50°C
63 pathogenic Sibling s species	species	A. lentulus	Drug-resistant
	NN '	A. fischerianus	More drug resistant
2 2	twi	A. fumigatiaffinis	More drug resistant
Ariridi	nutans	A. viridinutans sensu stricto	Aussie discovery (1954)
Copyright		A. udagawae	Chronic lung aspergillosis (CLA)
Jos Houbraken publication	ns	A. felis	CLA

Manual of Clinical Microbiology 12th Ed, ASM, Chapter 122, 13th Edition

Invasive aspergillosis: Key WHO findings

- Relevance: 'One Health', *Aspergillus* in environment (49 articles, final analysis)
- Mortality: 30, 42, 100-d, 12-wk, azole-resistance, CAPA vs. non-CAPA (13-50%)
- Length of hospital stay (LOS): 2 studies; no data on excess LOS related to IA or LOS variation in subgroups e.g. cancer patients
- No data on IA complications or sequelae
- Azole susceptibility rates varied ++ with study and geography (9.6-100%), cross resistance, increase rate within time fame of review in 1 study
- Newer host risks: viral infections (CAPA, 'flu), confounders: diabetes, COPD, ESKD
- Annual inc.: wide range, varied denominators, CAPA (5-35%), acute leukemia 5.84/100 patients
- Globally distributed

Morrissey O... Beardsely J. Systematic review (to be submitted) 1 Jan 2016- 10 Jun 2021

Azole resistance: clinical *A. fumigatus* isolates

Continent	Country, years	Prevalence	Characteristics	Reference
Europe	Denmark 2018- 2020	6.1%	National TR ₃₄ - 39/66, 202	Risum 2020
	Belgium, 2016- 2020	7.1%	Single centre TR ₃₄ - 74/78	Resendiz-Sharpe, 2021
	Netherlands; 2019-2020	9.2% AC	Multicentre TR ₃₄ - 392/660 TR ₄₆ -132/660	www.swab.nl/nl/ nethmap
P	Spain: 2019 of	59 4.7%	Multicenter TR ₃₄ -19/34, TR ₄₆ 1	Escribano 2021
	Turkey; 2018-2019	3.3%	Multicenter TR ₃₄ - 9/19	Ener 2022
Americas	USA; 2015-2020	3.5%	Multicenter	Badali 2022

8

Azole resistance rates: clinical A. fumigatus isolates

Continen t	Country, years	Prevalence	Characteristics	Reference
Asia- Pacific	China; 2019- 2020	4.1% (3/73)	Single center,	Wang, 2022
	China; 2016- 2018	4.3% (19/445)	Two hospitals TR ₄₆ (1)	Xu, 2020
P	Taiwan; 2015- 2020	50° 1.8% (2/113)	Single center TR ₃₄ /L98H (2/2)	Hsu, 2022
	Australia, 2009- 2017	2.6% (3/117) 0% envir.	Single jurisdiction TR ₃₄ /L98H (1) G54R (2)	Talbot, 2018

Agricultural countries: highest prevalence

- Is every use of pesticide equally harmful ?
- What do to about the tulips and the azole composting ?
- What with the newer "ipflufenoquin" Dihyro-orotate dehydrogenase (DHODH) inhibitor (similar to olorofim)
- One Health collaboration needed

Keukenhof, the Netherlands

Clinical and Research Needs I

- Mortality measure: WHO review identified substantial variation, type of mortality, time-point, patient population, uncertainty of trends over time
 - RCTS; identify all cause mortality at 6 wk, 12 wk standardise?
 - Attributable mortality (2 studies identified by WHO) but how to define ? Important in determining relative efficacy of different antifungal regimens
- Excess costs due to IA (economic studies),
- Longer term outcomes; 6 month mortality, complications of IA, sequelae,
- *Resistance:* need more studies outside of Europe, and USA, identify barriers and link to outcomes

Clinical and Research Needs II

- New risks: Bruton kinase inhibitor, influenza, COVID-19
- Surveillance local, regional to be encouraged; denominators need standardising
- Prophylaxis and treatment guidelines well established for IPA in classic high risk patients
 - CNS aspergillosis
 - Bone and joint infection
 - o SOTs, ICU, other risk groups
- Breakthrough disease vs. primary disease

Clinical and Research Needs III

- Oral treatments that are fungicidal needed
- What is the best time to assess treatment response? Would shortening time to response assessment be useful ?
- What do we mean by response vs. stable disease vs. failure for different forms of invasive aspergillosis
 - Does one size fit all?

Can we apply this response definitions to all hosts? -SOT vs HCT/HM vs ICU vs others

Other moulds: similar needs as aspergillosis but burden is less; data are fewer

- Mucorales
- Fusarium
- Scedosporium
- Lomentospora of prolificans

Mucorales: H&E in lung

Host risks: move beyond the "classic"

- Diabetic patients (Mucorales)
 Burn/trauma (Mucorales, Scedosporium, Lomentospora)
 - Cystic Fibrosis Patients (many molds)
- Lung transplants (many molds)
 Presigni

Mucormycosis: additional needs (therapeutics)

- No randomized controlled clinical trials
- Currently: amphotericin B formulation (lipid) IV → step down isavuconazole or posaconazole
- Do we need new trials or open label studies
 - Optimum timing of step down
 - Hematology/oncology vs diabetes mellitus
 - ROCM vs. other
 - Case-control prospective studies
 - Combination therapy: typically late in the game

Other uncommon moulds

Likelihood of RCTs are even smaller for non-Mucorales Open label studies, salvage therapy trials
 Timing of enrollment is uncommon mold pathogens

Timing of enrollment is problematic...

 \rightarrow why do patients need to fail before being able to enroll if we have better/promising drug to offer?

→ what's the purpose?

 \rightarrow Adaptive trial design with its pros and cons

Messages

Focus on unmet needs

- Surveillance and burden
- Broaden trial eligibility criteria to include:
- 6202J. - Specific populations at risk (e.g. lung transplants and prophylaxis)
 - Non-pulmonary and sanctuary sites
 - Children
 - Breakthrough infections
- AFWG and other professional societies
 - Promote discussions and laboratory capacity
 - Update the response definition criteria for mold infections to be more realistic and to achieve endpoints based on specific pathogen or host arour

Host – beyond the "Classic"

Cystic Fibrosis patients

- 28-49% have fungi in sputum (variation ++)
- most likely colonized with non-fumigatus Aspergillus, Fusarium and Alternaria, Scedosporium and Lomentospora
- Performance of biomarkers?
- Definition criteria differ from EORTC/MSG Criteria
- Exposure to antifungals \rightarrow azole resistance
- Pharmacokinetic issues
- Why is this important??
 - most patients will be listed and receive bilateral lung transplant

which