

Unlike candidemia, isolation of candida in an intra-abdominal specimen is not synonymous with the need for antifungal therapy.

• However, differentiation between colonization and infection is difficult.

Bassetti M, et al. Intensive Care Med. 2013;39:2092; Afzal Azim, et al. EMJ Nephrol. 2017;5:83

Performance of nonculture tests for diagnosing intra-abdominal candidiasis

		¥					
65		Test	Method	Study groups (n)	Sensitivity (%)	Specificity (%)	
		Mannan	Platelia	IAC (20) vs at-risk ICU pts (202)	40	67	
	~	Antimannan	Platelia	IAC (20) vs at-risk ICU pts (202)	25	89	
C	2	C. albicans germ tube antibody	Vircell	IAC (20) vs at-risk ICU pts (202)	53	64	
				IAC or urologic candidiasis (11) vs at-risk ICU pts and healthy controls (76)	73	54	
				IAC (18) vs at-risk ICU pts (18)	61	80	
		CJ Clancy & MH Nguyen. J Clin Microbiol. 2018; 56: e01909.					

Performance of nonculture tests for diagnosing intra-abdominal candidiasis

Test	Method	Study groups (n)	Sensitivity (%)	Specificity (%)	
1 ,3 -β- ^D - glucan	Fungitell	IAC (34) vs at-risk ICU pts (73)	56	73	.0
		IAC (29) vs at-risk ICU pts (60)	65	78	
		AC or urologic candidiasis (11) vs at-risk ICU pts and healthy controls (76)	64	83	0
		IAC (20) vs at-risk ICU pts (202)	77	57	
		0.0	:0		

Performance of nonculture tests for diagnosing intra-abdominal candidiasis

, et.

.05		Test	Method	Study groups (n)	Sensitivity (%)	Specificity (%)		
8tc		PCR	Candida real- time PCR panel	IAC (34) vs at-risk ICU pts (73)	88	70		
			Multiplex Can dida real-time PCR	IAC or urologic candidiasis (11) vs at-risk ICU pts and healthy controls (76)	91	97		
				IAC (20) vs at-risk ICU pts (202)	86	33		
	CJ Clancy & MH Nguyen. J Clin Microbiol. 2018; 56: e01909.							

CJ Clancy & MH Nguyen. J Clin Microbiol. 2018; 56: e01909

Interpreting nonculture test results

- Pretest likelihoods of candidemia and intraabdominal candidiasis can be estimated from disease prevalence in various clinical settings.
 - In most settings, positive predictive values of nonculture test are low, and negative predictive values are high.
- For tests to be useful, clinicians must understand the pretest likelihood of invasive candidiasis and test performance for the most common disease manifestation in a given patient.

CJ Clancy & MH Nguyen. J Clin Microbiol. 2018; 56: e01909.

- The occurrence of Candida superinfection in patients with prior sepsis/bacterial infection
 - Blunted immune response
 - Polymicrobial infection
- The presence of intra-abdominal pathological change:
 - hollow visceral perforation
 - presence or recurrence of tumors

Recommendations on the management of intra-abdominal candidiasis

- Direct microscopy examination for yeast detection from purulent and necrotic intra-abdominal specimens during surgery or by percutaneous aspiration is recommended in all patients with nonappendicular abdominal infections including secondary and tertiary peritonitis.
- Prophylactic usage of fluconazole should be adopted in patients with recent abdominal surgery and recurrent gastrointestinal perforation or anastomotic leakage.
- Empirical antifungal treatment with echinocandins or lipid formulations of amphotericin B should be strongly considered in critically ill patients or those with previous exposure to azoles and suspected intra-abdominal infection with at least one specific risk factor for Candida infection.

Bassetti M, et al. Intensive Care Med. 2013;39:2092

Recommendations on the management of intra-abdominal candidiasis (cont.)

In patients with nonspecific risk factors, a positive mannan/antimannan or $(1 \rightarrow 3)$ - β -D-glucan or polymerase chain reaction test result should be present to start empirical therapy.

- Fluconazole can be adopted for the empirical and targeted therapy of non-critically ill patients without previous exposure to azoles unless they are known to be colonized with a *Candida* strain with reduced susceptibility to azoles.
- Treatment can be simplified by stepping down to an azole (fluconazole or voriconazole) after at least 5-7 days of treatment with echinocandins or lipid formulations of amphotericin B, if the species is susceptible and the patient has clinically improved.

Bassetti M, et al. Intensive Care Med. 2013;39:2092

