

Laboratory diagnosis of fungal infections

Professor Ruoyu Li

Professor, Department of Dermatology
Peking University First Hospital
Peking University Research Center for Medical Mycology
Beijing, China

MMTN Conference 2019, April 18~19, Nanchang, China

Laboratory Diagnosis of Fungal Infection

Ruoyu Li, MD.

Research Center for Medical Mycology, Peking University,
Beijing, China

Introduction

First Hospital, Research Center for Medical Mycology, Peking University

Clinically important mycoses

- Skin and mucosal infections: ~billion
- Chronic severe (including NTDs):
 - —Chronic pulmonary aspergillosis
 - -Mycetoma (NTD)
 - —Chromoblastomycosis (NTD)
 - -Sporotrichosis (NTD)
- **Acute invasive**
 - —Candidiasis
 - —Aspergillosis
 - -Cryptococcosis
 - -Mucomycosis
 - Pneumocystis jirovecii pneumonia
 - —Teleromycosis marneffei

Prevalence of fungal diseases-estimate precision

>150 million people have serious fungal diseases

- ~3,000,000 cases of chronic pulmonary aspergillosis
- ~223,100 cases of cryptococcal meningitis complicating HIV/AIDS
- ~700,000 cases of invasive candidiasis
- ~500,000 cases of PJP
- ~250,000 casesof invasive aspergillosis

Number of deaths from fungal disease:

>1.6million≈tuberculosis

Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases
—estimate precision. J Fungi, 2017, 3(4): E57

First Hospital, Research Center for Medical Mycology, Peking University

Main determinants on incidence and prevalence of fungal disease

- Socio-economic, geo-ecological characteristics;
- Increasing number of at-risk populations :
- __ATDS
- Tuberculosis
- ---COPD
- Asthma
- —Cancers
- —Organ transplantation
- —Corticosteroid therapy

Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases
—estimate precision. J Fungi, 2017, 3(4): E57

Microbiological evidenceconfirmed diagnosis

	M	li	CI	ro	S	C	0	pi	C	exa	m.	
--	---	----	----	----	---	---	---	----	---	-----	----	--

□Sterile area □Pathology

Culture:

- Positive in sterile area :
- □CSF □Tissues □ Extract
- □Blood (Yeast \ Fusarium etc., but not Aspergillus)

Antigen detection: Cryptococcus antigen

First Hospital, Research Center for Medical Mycology, Peking University

Microbiological evidence-Probable Diagnosis

Microscopic:

- Filamentous fungi positive in either:
- □Sputum □BAL □Brancho-brush □Sinus extract

Culture:

- Filamentous fungi positive in either :
- □ Sputum □BAL □Brancho-brush □Sinus extract
- Antigen detection:
- G test (Serum)
- GM test (Plasma、Serum、BALF、CSF)

Direct Microscopic Examination

- KOH
- NS
- Calcofluor white (Fluorescent)
- India (Chinese) ink
- Gram
- Giemsa
- Histopathology

First Hospital, Research Center for Medical Mycology, Peking University

Materials

- **Sputum**
- Bronchoalveolar lavage Fluids :
- **Blood cultures**
- **Bone marrow**
- Tissues and surgical material
- **Cerebrospinal fluid**

- Urine
- - Peritoneal
 - Pleural
 - Pericardic
 - Ascitic fluid
 - Joint fluids

CFW (Florescent) Staining

- Binding with polysaccharides on the chitin ring to develop fluorescence
- Combined with KOH dissolution
- Easier to find fungal elements
- Show the fungal structure clearly

First Hospital, Research Center for Medical Mycology, Peking University

Calcofluor white stain of Malassezia

Summary of direct examination

- Yeast cells: yeast;
- Yeast cells and pseudohyphae: Candida spp.;
- · Yeast cells with capsules: Cryptococcus spp.;
- Transparent septate hyphae, about 45° branches: Aspergillus spp.;
- Transparent, non-septate hyphae, wide, about 90° branches: Mucor spp.;
- Brown or black hyphae or conidia: dematiaceous fungi

Explanation of the Culture Results

- Cryptococcus spp., P.marneffei: confirmed diagnosis:
- Candida spp., Aspergillus spp.: combine with clinical and other reference;
- Sterile area, blood and CSF: confirmed diagnosis;
- Pus, sputum or urine: carefully explanation, repeat the culture if necessary;
- Combination the direct exam and culture result is very important.

Which isolates need to identify into species level

- Isolates from the sterile area, blood, CSF, body fluid, BAL etc.;
- Isolates from ICU, burn pts., organ transplantation pts.,
- Exact ID is necessary to help the selection

Principle of Yeast identification

- "Yeast" is not a formal taxa, but is a widespread form of growth in ascomycetes and basidiomycetes;
- Identification needs to combine morphological, physiological and biochemical characteristics as well as molecular and mass spectrometry characteristics;

Identification of molds

- Most molds can be identified by culture;
 -colony form, surface color, and growth rate
 -culture medium, temperature, etc.
- Transmitted culture to low nutrient medium to promote sporulation
 - -PDA and CMA
- The characteristic of condiogenesis under the microscope was observed by the technique of slide culture

First Hospital, Research Center for Medical Mycology, Peking University

Culture ID-Morphology

- The ID were determined by the morphology of colonies, microscopic characteristic of fungal sporulation;
- Try to identify under the microscope;
- Need to see sporulation (needle picking, tape or slide culture)
- Stimulate sporulation media: PDA and CMA

Culture ID-biochemical method

- CHROMagar Candida(48hr)
- API 20C AUX(48-72hr)
- RapID Yeast Plus System(4-5hr)
- Automatic system
 - ID 32C strip system(24-48hr)
 - Vitek Yeast Biochemical Card system
 - Vitek 2 ID-YST card system (24hr)
 - Quantum II
 - Biolog YT MicroPlate system (Biolog, USA)

Vitek 2 ID-YST card system

First Hospital, Research Center for Medical Mycology, Peking University

Culture ID—Molecular Way

- PCR-EIA
- RLB, AFLP, SSCP, RAPD
- Gene Chips
- PNA-FISH (fluorescein-labeled peptide nucleic acid fluorescent in-situ hybridization)
 - 26S rRNA, Candida albicans, C.glabrata
 - sensitivity:100%, specificity: 100%

MALDI-TOF MS and other techniques

	Methods	Time	Cost	Difficulties	Throughout
	Xe.	0	(Yuan/sample)		
Conv	Phenotypic	7-14d	200	Complicated	low
Conventional	rDNA	1-2d	80	Complicated	low
	DNA-DNA hybridization	1-2d	1000	Complicated	5/day
method	Lipid acid analysis	1-2h	1000	Special trainning	10/day
MA	LDI-TOF MS	3-5min	4	Simple, automatically	400/day

"Proteomic phenotyping is revolutionizing diagnostic mycology as fully reflecting species/morph varieties but often overcoming taxonomic hindrance."

Chierico FD et al. J of Proteomics 2012;75:3314-30.

Non-culture diagnosis

	G test	GM test	LA test
Pathogen	Can. Asp. Pneumocystis, etc.	Asp.	Crypto.
Methods	Agglutination	ELISA	Latax
Samples	plasma	serum	serum、CSF
Time	4hrs.	6hrs.	30mins.
Sensitivity	60-90%	71%	90-100%
Specificity	60-90%	89%	≈100%

The advantage of serology diagnosis

- · Fast report
- · Increased sensitivity
- Easy to get sample
- · The examined makers are usually diagnostic
- Could be used for the evaluation of severity and treatment effect

β-1,3-D-Glucan: Indication

- Not only for Candida infection
 - Aspergillus , Fusarium and other molds (Miyazaki, J Clin Micro 33:3115, '95)
 - Cryptococcus negative (a-glucan in CW)
- Positive result could not confirm the fungal species
- May be reduced by glucanase within 5 days, the monitor period should be 2/week

GM test: EIA (Platelia)

Detecte galactomannan, (GM)

- 3. Detection avidin-enzyme + substrate
- 2. Detecting Ab anti-galactomannan [biotin conjugated]

Ag - blood, urine, BAL

1. Capture antibody – monoclonal anti - galactomannan

Specificity = >90% sensitivity = 75%

Summary of GM test

- Screening for GM = aid for the early (preemptive?) diagnosis of IA in prolonged neutropenic patients:
 - Cutoff = 0.5
 - Frequency: 2x/week
 - Caveats
- Serum, BALF, CSF samples
- GM + CT: high predictive value
- GM + β-D-glucan/PCR: increased specificity and sensitivity

Real-time PCR for detecting Candida spp.

Design

- Species selection
- DNA target selection
- Primers design
- •Species/groups specific probe design

Set up of multiplex real-time PCR

Clinical material

DNA extraction method

