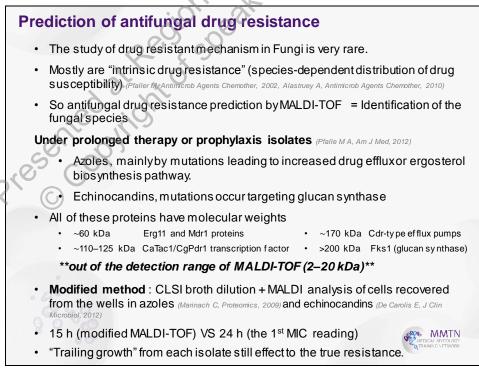
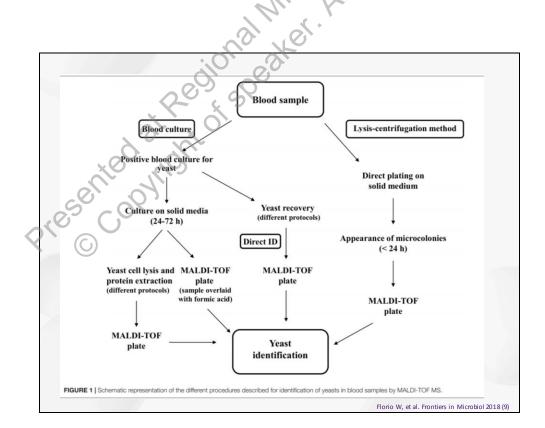

	The accuracy of yeast identification directly from blood culture					ulture				
	Hemoculture	Sample prep.	Database (library version)	C. albicans	C. glabrata	C. parapsilosis	C. tropicalis	C. krusei	C. guilliermondii	Reference
	BacT/Alert w/o charcoal	Extraction with TFA* only	Andromas (unknown)	20/20			-			Ferroni A et al. 2010
25	BACTEC	Differential centrifugation	Biotyper (V2.0.4.0)	0/8	0/9	-	0/1	-		Ferreira L et al. 2011
	My cosis IC/F	SD wash step	Other	5/5	5/5	5/5	5/5	5/5		Marinach- Patrice C et al. 2010
	Bactec FX	Sepsity per	Bioty per (V3.1.1.0)	28/28		8/8	5/5			Yan Yetal. 2011
	10 Aerobic/anaer obic/F	Sepsity per	Biotyper (V3.1.1.0)	4/5	2/7	1/2		-	1/1	Schubert S et al, 2011
	My cosis IC/F	Tween 80 wash	Bioty per (unknown)	187/195	22/26	65/69	28/32	6/8	6/10	Spanu T et al, 2012
	*TFA: Trifluoroa	cetic acid							8	MEDICAL MYCOLOGY TRAINING NETWORK

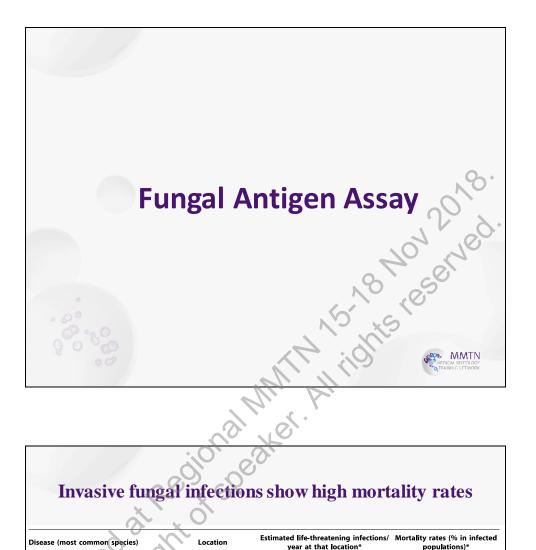


- single species at the top
- (ii) have no other species intermingled
- (iii) significantly difference of log-score to the next species (ie. 0.200).
- Using these criteria, accuracy ~94% (1000/1067 isolates tested across 6 studies).
- Only if the criteria are not met, the sample should be repeated the extraction step.

Cost effectiveness (Thailand based) (modified from Galar A., Eur. J. Clin, Microbiol Infect Dis, 2012)

Method	time/sample (min)	Turnaround time/sample (h)	Cost of reagents/samples (USD)
Conventional test			
 Biochemical test API 20C Aux yeast identification system 	15 15	48-72 48-72	3 7
Molecular test PCR & sequencing 	60	72	20
MALDI-Biotyper	5	0.5	0.5
ALDI-TOF Reagents: lower than c 	conventional/r	noleculartest	Hozerve


MMTN


MALDI-TOF

- Reagents: lower than conventional / molecular test
- Machine + Maintenance : High (USD 150,000 approx/year) •

However, two of the strongest cost-driving factors in clinics are

- Prolonged hospitalization
- · Application of expensive drugs within empirical therapy

Invasive fungal infections show high mortality rates

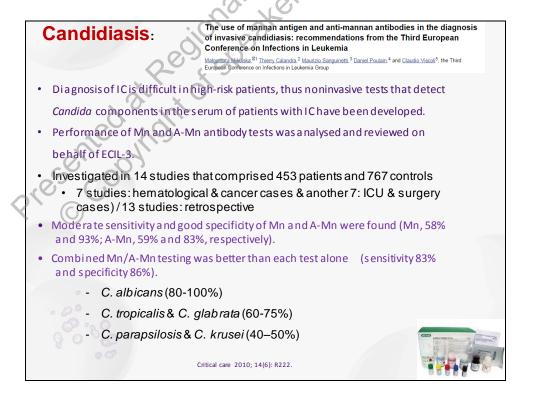
Disease (most common species)	Location	Estimated life-threatening infections/ year at that location*	Mortality rates (% in infecter populations)*
Opportunistic invasive mycoses)		
Aspergillosis (Aspergillus fumigatus)	Worldwide	>200,000	30-95
Candidiasis (Candida albicans)	Worldwide	>400,000	46-75
Cryptococcosis (Cryptococcus neoformans)	Worldwide	>1,000,000	20–70
Mucormycosis (Rhizopus oryzae)	Worldwide	>10,000	30–90
Pneumocystis (Pneumocystis jirovecii)	Worldwide	>400,000	20-80
indemic dimorphic mycoses*†			
Blastomycosis (Blastomyces dermatitidis)	Midwestern and Atlantic United States	~3,000	<2–68
Coccidioidomycosis (Coccidioides immitis)	Southwestern United States	~25,000	<1–70
Histoplasmosis (Histoplasma capsulatum)	Midwestern United States	~25,000	28–50
Paracoccidioidomycosis (Paracoccidioides brasiliensis)	Brazil	~4,000	5–27
Penicilliosis (Penicillium marneffei)	Southeast Asia	>8,000	2-75

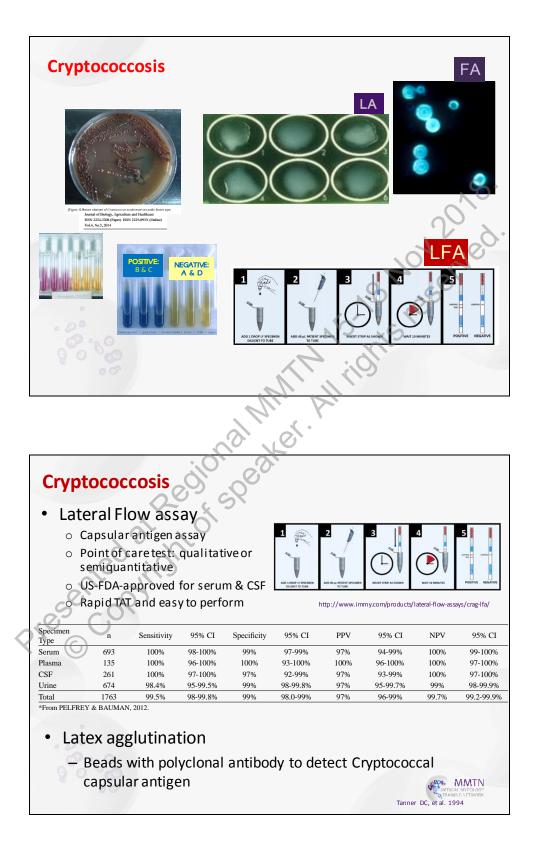
Brown GD, et al. Sci Transl Med. 2012

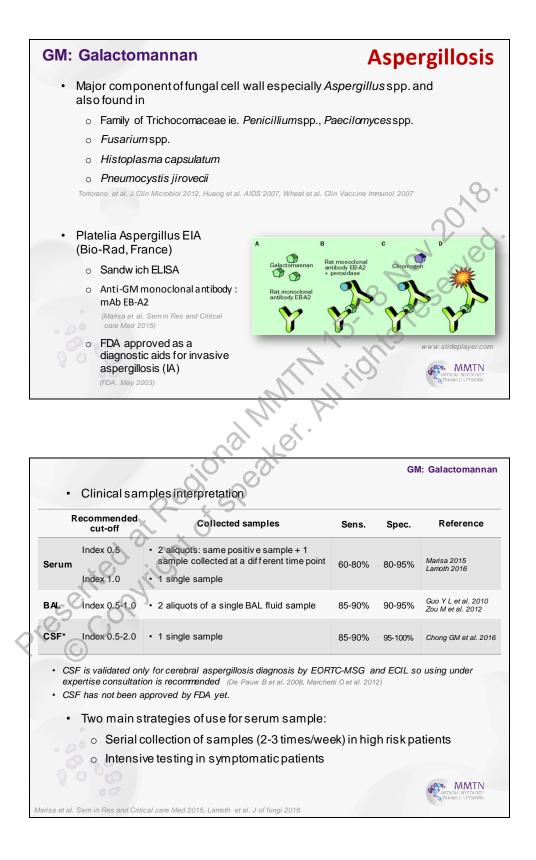
MMTN

MMTN

It has been used since the 1950s


- Immunodiffusion (ID)
- Complement fixation (CF)
- Enzyme immuneassay(EIA)
- · Lateral flow assay
- Etc.


Advantages


- It can be positive when culture results are negative or samples are difficult to obtain.
 - 50% of sero-positive sputum from patients with chronic aspergillosis are culture-negative. ov server
- · Less time consuming compare to cultivation
- Minimallize the invasive sample

Disadvantages

- Limited for immunocompromised patients
- Inability to distinguish between current or previous infection
- Sensitivity is dependent on the type of disease and the timing of testing relative to the disease process.

Aspergillosis

Invasive pulmonary aspergillosis

- · Specific anti-aspergillus IgG for
 - Diagnosis
 - Prediction of IPA in patients undergoing allo-HSCT

Chronic pulmonary as pergillosis

- Galactomannan: Positive in only 25% of CPA patients
- Anti-Galactomannan: Positive in 90% of CPA patients
- Anti-Mannan: Positive in 77% of CPA patients
- Aspergillus specific IgG ELISA; Spec. >99%
 - Immunulite (Germany) Sens. 96%
 - ImmunoCAP (ThermoFisher) Sens. 85%
 - Serion (Germany) Sens. 86%
 - Genesis (UK) Sens. 93%
 - etc.
- 8 Nov 2018. ts reserved. It might have a role in monitoring treatment response in CPA
 - (On process of study)

Lateral flow assay – Invasive Aspergillosis

- Recently shown to be more accurate than the standard serologic markers.
- Detect

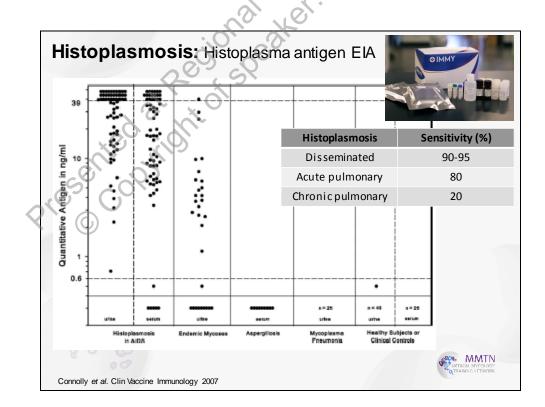
Glucoprotein antigen in the sera and BAL fluid of patients with invasive aspergillosis in 15 min (Thornton CR. 2008)

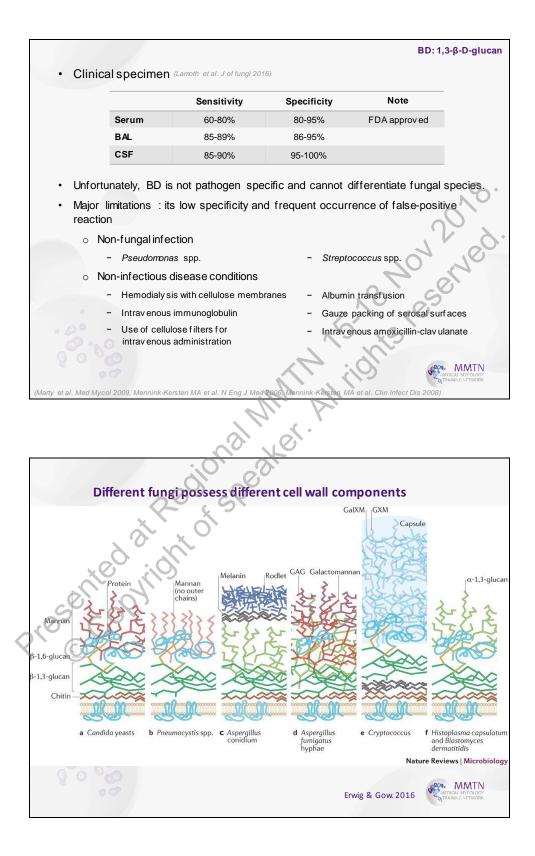
Secreted during active growth of A. fumigatus, binds to a monoclonal antibody (JF5)

Us e ful for the confirmation or exclusion of invasive a spergillosis in combination with other tests, such as PCR

Better clinical performance than that of GM assay when used as a screening test rather than a confirmatory test (Held J, et al. 2013)

Table 1 Per BALF sample performance of the BALF Aspergillus LFD for probable/ proven invasive pulmonary aspergillosis versus no evidence for invasive pulmonary aspergillosis in different patient cohorts (percentage and absolute numbers)^a


Patient group	Sensitivity	Specificity	PPV	NPV
Overall ^b	73% (83/113)	90% (498/552)	61% (83/137)	94% (498/528)
Solid organ transplantation	94% (15/16)	92% (89/97)	65% (15/23)	99% (89/90)
Intensive care unit	79% (26/33)	85% (176/206)	46% (26/56)	96% (176/183)
Respiratory diseases	78% (25/32)	91% (196/215)	57% (25/44)	97% (196/203)
Hematological malignancies	67% (36/54)	91% (126/139)	73% (36/49)	88% (126/144)


MMTN

BD: 1,3-β-D-glucan Major component of fungal cell wall but less in • o Mucorales ie. *Mucor* spp., *Rhizopus* spp. o *Cryptococcus* spp. and some other Basidiomycota ie. *Malassezia* spp. Commercial Horseshoe Detection Manufacturer cut-off value Available Manufacturer assay crab substrate system US (FDA Associated of Cape Cod Limulus Fungitell assay 60-80 pg/ml Colorimetric Inc., East Falmouth, MA, approved in 2003) polyphemus (Glucatell) USA and Europe Fungitec-G test Seikagaku Corporation. Tachypleus Colorimetric 20 pg/ml Japan MK (G-MK) Tokyo, Japan) tridentatus Wako Pure Chemicals Beta-glucan Tachypleus Turbidimetric 11 pg/ml Industries Ltd., Osaka, Japan test Wako tridentatus Japan BGSTAR beta Maruha Nichiro Foods Tachypleus Colorimetric 11 pg/ml glucan test Japan Inc.Tokyo, Japan tridentatus Maruha care Med 2015) Fungitell assay (Cape Cod Inc., USA) o FDA approved as an aid to diagnose deep-seated my coses and fungimia. European medical center : presumptive diagnosis of invasive fungal disease 0 (Marisa et al. Sem in Res and Critical care Med 2015) The EORTC-MSG panel : included a positive BD test as a microbiological criterion of IFI 0 (Lamoth et al. J of fungi 2016) Marisa et al. Sem in Res and Critical care Med 2015 A D Endotoxin (LPS) Factor C Factor C (activated) Limulus polyphemus Clinical specimen Factor B (1-3) β-D glucan Factor B (activated)

Limus A 15 Amebocyte Lysate (LAL) Pathway Factor G Pro-clotting Synetic peptide Clotting Clinical enzyme Factor G chromogenic substrate enzyme (activated) ecimer Ε Reaction Assay Absorbance Well 405 nm Syntetic peptide (Sinth chromogenic Yellow artificial substrate substrate Microplate Biological cas cade-based as say Measuring activation of Factor G through horseshoe crab substrates

