

Antifungal prophylaxis: Whom, what and when

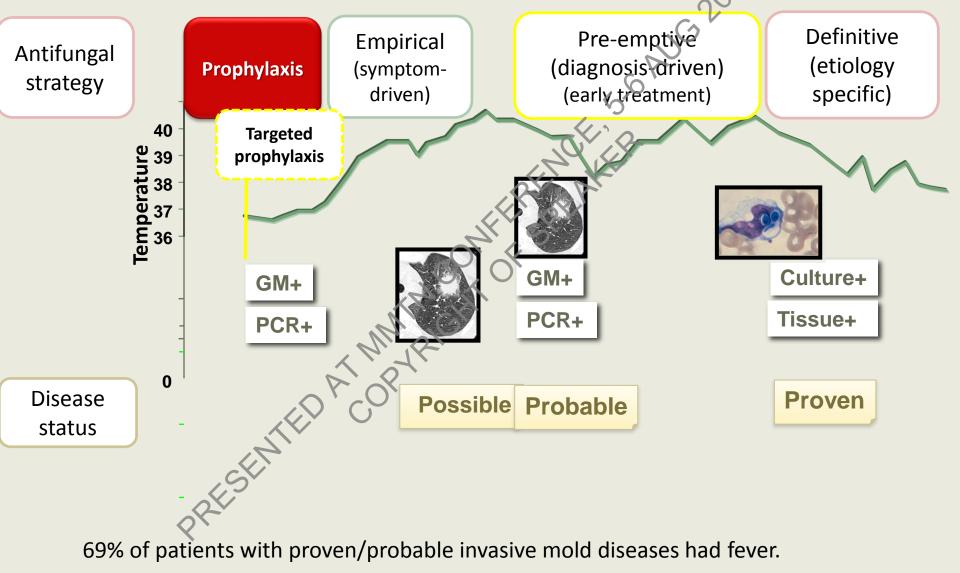
Professor Yee-Chun Chen

Professor of Medicine National Taiwan University Hospital and College of Medicine; Investigator, National Institute of Infectious Diseases and Vaccinology National Health Research Institutes, Taiwan

6AUG2011

Antifungal Prophylaxis: Whom, What and When

Yee-Chun Chen, M.D., PhD. Department of Medicine, National Taiwan University Hospital and College of Medicine, Taiwan

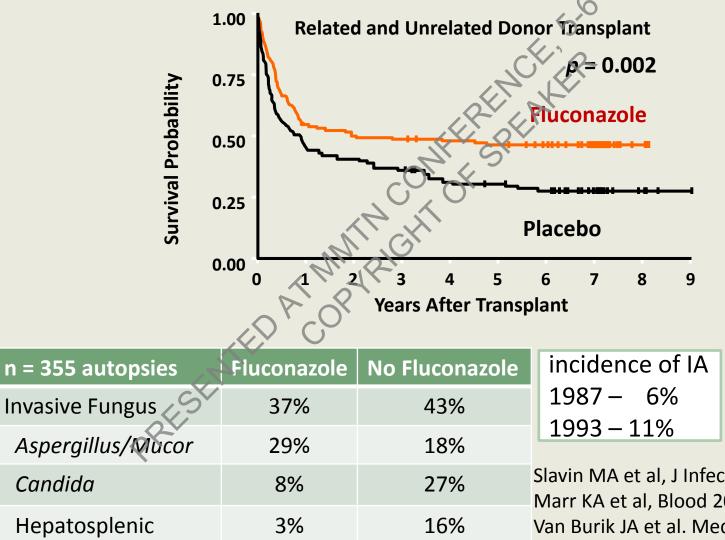

Disclosure

- received honoraria for speaking or advisory board membership from Pfizer, Gilead, Merck, or Astellus,
- has involved as a steering committee member of regional education programs for Pfizer and Gilead,
- received investigator-initiated research funds from Pfizer and Gilead,
- received research grants from Minister of Science Technology, Taiwan and National Health Research Institutes, Taiwan.

Contents

- To be or not to be
- **Recent advances** ullet
- •
- •
- lacksquare
- ۲
- .at AT AT MM RICHTOPSOF •

Antifungal strategies

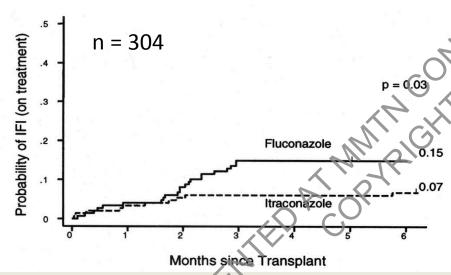

Porpon et al. Med Mycol 2017 doi: 10.1093/mmy/myx029

Rationale for Prophylaxis

- The substantial morbidity and mortality of invasive fungal diseases (IFD)
- The difficulty in obtaining a timely diagnosis due to the limitations of available diagnostic tests
- The suboptimal response of best available treatments
- The substantial additional resource use in patients with IFD
 - Diagnostic approaches and therapeutic monitoring
 - Slow resolution of infection => prolonged suppressive therapy
 - Risk of recurrence in the immunosuppressive period
- Delay in subsequent chemotherapy which compromises overall outcome

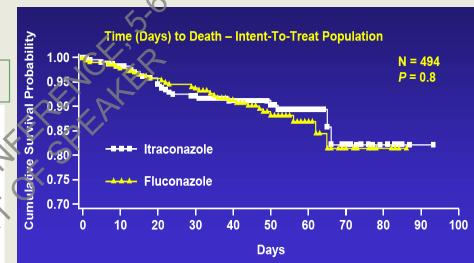
RECENT ADVANCES

Fluconazole Prophylaxis Prevents IFI and **Improves Survival After HSCT**

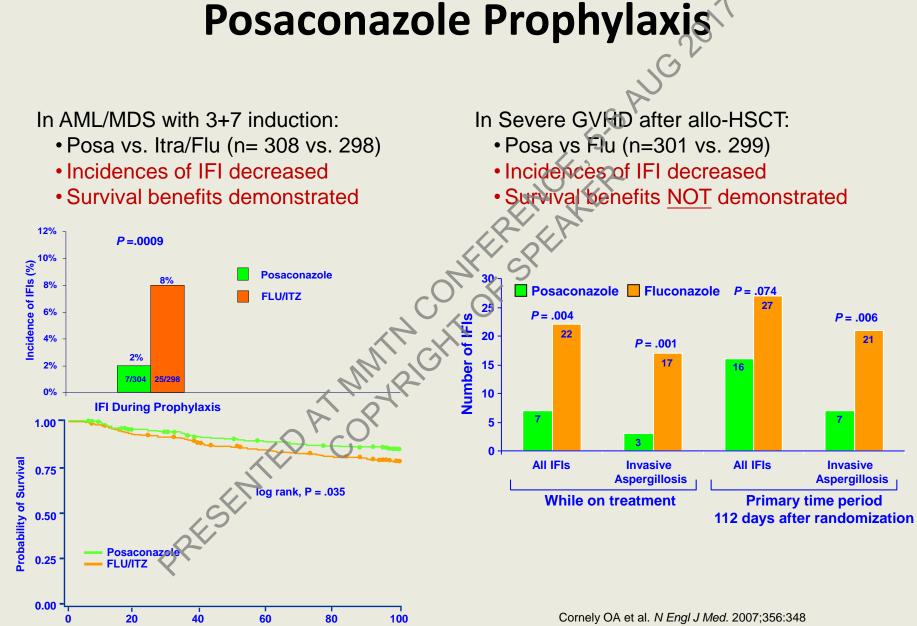

Slavin MA et al, J Infect Dis 1995;171:1545-5 Marr KA et al, Blood 2000;96:2055-61 Van Burik JA et al. Medicine 1998;77:246-54

Fluconazole vs Itraconazole prophyalxis

Allo-HSCT


Cumulative incidence of proven/probable IFI while on-treatment

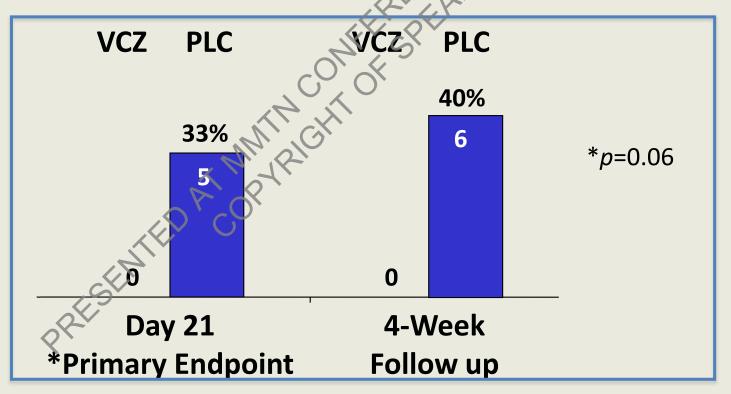
Discontinuation of itraconazole 36%



"Itraconazole appears to prevent IMI in the subset of patients who **tolerate** the drug"

Neutropenic patients

- 1. Marr KA et al. Blood 2004;103:1527-33
- 2. Glasmacher A et al. J Antimicrob Chemother 2006;57:317-25



Days after Randomization

Ullmann AJ et al, N Engl J Med 2007;356:335-47

Voriconazole Prophylaxis vs Placebo

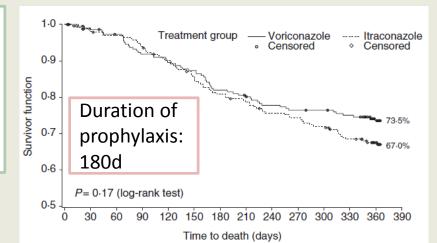
- n = 25, first induction for AML
- Incidences of Lung Infiltrates
- Stopped because of ethical concern with placebo arm

Vehreschild JJ et al, J Infect 2007;55:445-9.

Voriconazole vs. itraconazole in alloHSCT

- IMPROVIT Study
- Prospective, phase 3, randomized, open-label trial
- 47 transplant centers across 12 countries
- Survival benefits <u>NOT</u> demonstrated

•Global **satisfaction** score at d14 (70% vs. 63%)** was a significant predictor of completion 100d prophylaxis


• Less use of other systemic antifungals (30% vs. 42%)**

Success of prophylaxis*	Voriconazole N=234	itraconazole N=255	Differences (95% Cl)
at d180	48.7%	33.2%	16.4% (7.7-25.1)**
at d100	54.0%	39.8%	15.4% (6.6-24.2)**

*Composite endpoints

- 1. Survival at day 180
- 2. No probable/proven breakthrough IFI
- **3.** Not discontinuation of study drug for >14d during 100d prophylactic period

**P<0.05 Br J Hematol 2011;155:318-327

Voriconazole vs. fluconazole in allo-HSCT patients

Fungal-free survival (FFS)

•BMT-CTN Study

Prospective, randomized, double-blind trial
35 transplant centers in the Blood and Marrow Transplant Clinical Trials Network
Adult and pedi

Cumulative incidence rates of IFIs

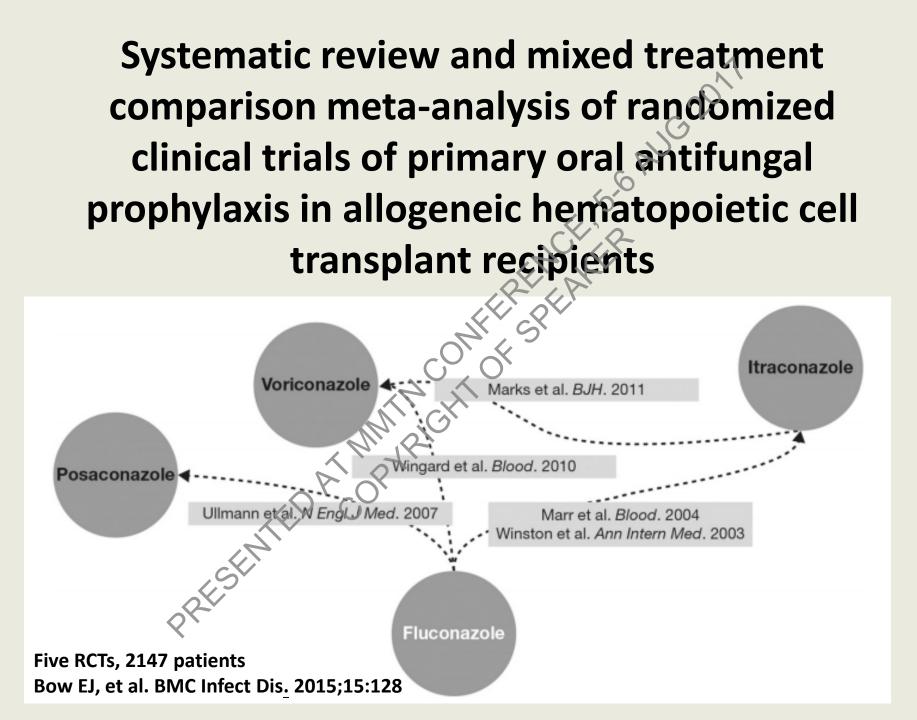
Fluconazole (N=295) Voriconazole (N=305) 10 Fluconazole (N=295) Voriconazole (N=305) 8.0 0.8 Duration of prophylaxis: 100d or 180d (high risk) 0.6 Probability Probability d180 4.0 d365 d180 d365 13.7% Fluconazole 11.2% Voriconazole 78% 64% 9.1 0.2 12.7% 0.2 Voriconazole 7.3% Fluconazole 75% 65% 82 0.0 10 10 Months Post Transplant Months Post Transplant Includes proven/probable/presumptive infections Includes proven/probable/presumptive infections

AML (independent risk factor of IFI)

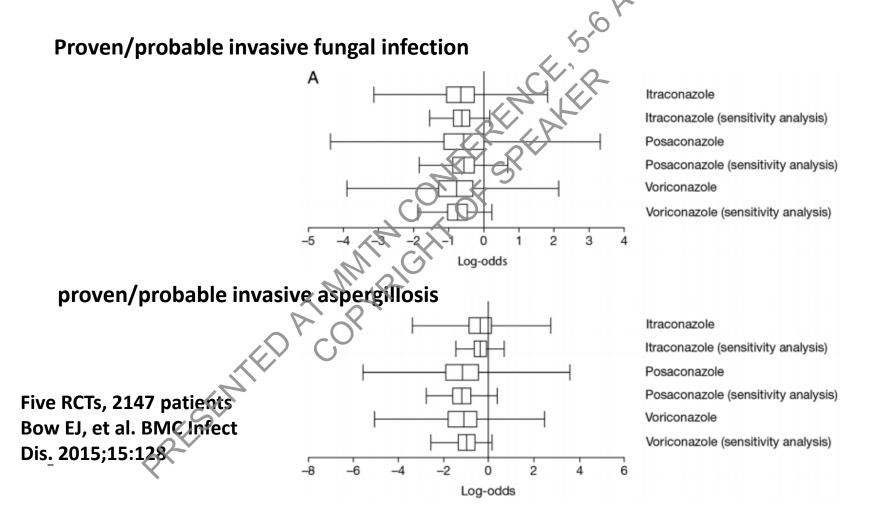
- Fewer IFIs (8.5% vs. 21%; p=0.04)
- Improved FFS (78% vs. 61%; p=0.04)
- No difference in OS (81% vs. 72%; p=0.32)

Structured monitoring

- GM twice-weekly until d60 then once-weekly until d100
- GM twice-weekly until d100 if GVHD under steroid therapy
- Radiological studies and invasive diagnostic procedure while IFI was suspected: Chest CT, Sinus CT, Bronchoalveolar lavage or biopsy


Empirical L-AmB or caspofungin as short as possible and for up to 14 days

Wingard J et al, Blood 2010;116:5111-8


Integrated diagnostics and therapeutics

Mould-active compared with fluconazole prophylaxis to prevent invasive fungal diseases in cancer patients receiving chemotherapy or haematopoietic stem-cell transplantation

- A meta-analysis that included 20 randomized trials
- reduced the risk of invasive aspergillosis compared with fluconazole prophylaxis
- reduced the risk of invasive fungal infection—related mortality compared with fluconazole prophylaxis (RR 0.67, 95% CI 0.47-0.96).
- no difference in overall mortality
- associated with an increased risk of adverse events leading to antifungal discontinuation

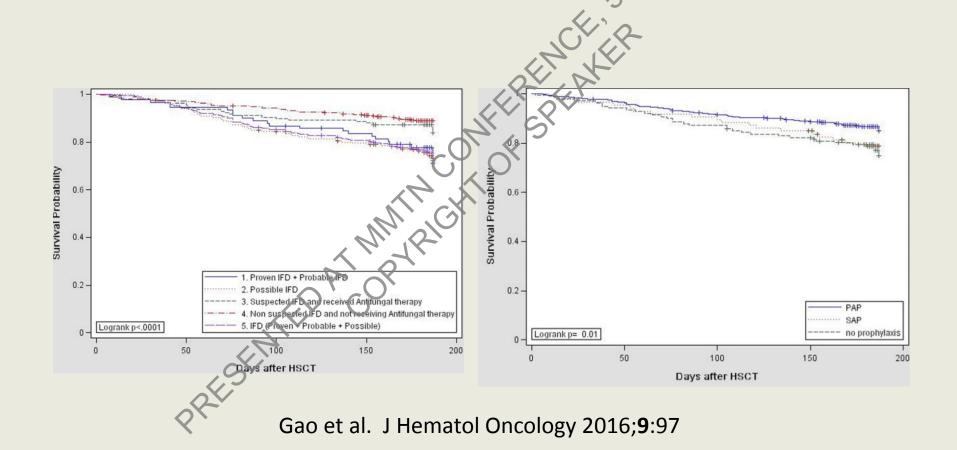
Treatment effect of mould-active compared with fluconazole prophylaxis in allogeneic hematopoietic cell transplant recipients

All-cause mortality was similar across all mould-active agents

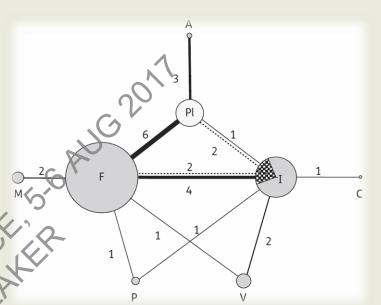
Antifungal prophylaxis is helpful to reduce IFD in patients after allo-HSCT

The first large-scale observational study of invasive fungal disease (IFD) in China

Characteristic	PAP (N = 818)	SAP (N = 88)	Non-prophylaxis (n = 147)
Patients with IFD	186 (22.7 %)	34 (38.6 %)	101 (68.7 %)
Proven	6 (0.7 %)	0 (0.0 %)	7 (4.8 %)
Probable	57 (7.0 %)	10 (11.4 %)	14 (9.5 %)
Possible	123 (15.0 %)	24 (27.3 %)	80 (54.4 %)
Patients without IFD	632 (77.3 %)	54 (61.4 %)	46 (31.3 %)


Independent risk factors for IFD in PAP group:

- Age ≤18 years old
- HLA-haploidentical or matched unrelated donor
- Decreased albumin
- The use of itraconazole


PAP, primary antifungal prophylaxis; SAP, secondary antifungal prophylaxis; IFD, invasive fungal diseases

Gao et al. J Hematol Oncology 2016;9:97

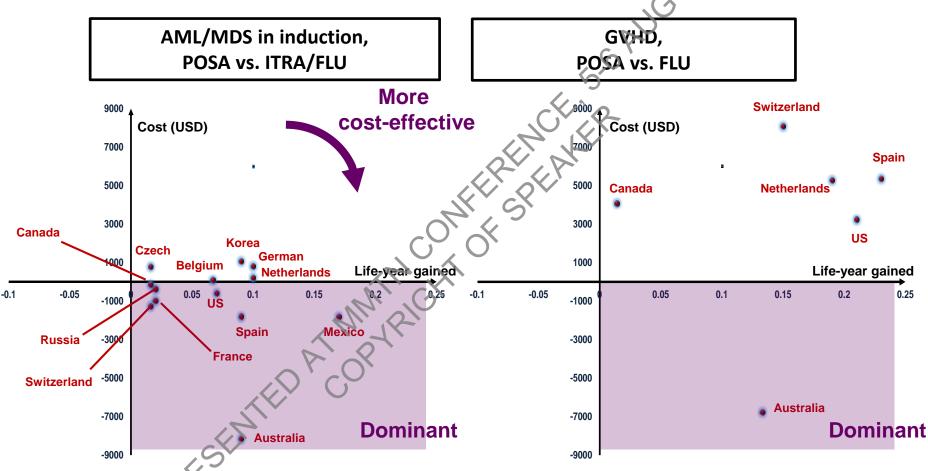
Antifungal prophylaxis is helpful to improve the overall survival of patients after allo-HSCT

Mixed treatment comparison of systemic antifungal prophylaxis in neutropenic patients receiving therapy for haematological malignancies

- A systematic review of 25 studies identified
- Antifungal prophylaxis was more effective than no prophylaxis in reducing IFI risk.
- The IFI risk after voriconazole or posaconazole was lower than after fluconazole or itraconazole tablets.
- Posaconazole was also found to be more effective than no prophylaxis in reducing all-cause mortality.

Resistance, Toxicity, Cost, Meanthrough infections THE FLIP SIDE

Antifungals are associated with a number of potential drug interactions, please consult the pharmacist for advice


Antifungal	Affected Drug(s)	Notes
Posaconazole	Ciclosporin, tacrolimus, sirolimus, statins, Rifampicin, Midazolam, Phenytoin (and other anticonvulsants), busulfan, thiotepa	Ciclosporin/Tacrolimus dose adjustments may be required
Voriconazole	Ciclosporin, tacrolimus, Phenytoin, rifabutin, rifampicin, efavirenz, busulfao, thiotepa	Ciclosporin/Tacrolimus dose adjustments may be required.
Ambisome	Increased risk of nephrotoxicity when given with other nephrotoxic drugs i.e. ciclosporin, tacrolimus, aminoglyclosides. Can increase cardiotoxicity of digoxin due to Ambisone- induced hypokalaemia. Increased risk of hypokalaemia when used with corticosteroids and/or diuretics	Monitor renal function and electrolytes including potassium and magnesium levels
Micafungin	May increase levels of: Sirolimus, nifedipine or itraconazole	
Fluconazole	Warfarin, ciclosporin, tacrolimus, rifabutin, phenytoin, sulphonylureas, theophylline	

Breakthrough Candidemia in alloHSCT recipients, Japan

- Out of 768 allo-HSCT cases, 26 developed BC.
- Etiologies identified: *C. parapsilosis* (9 strains), *C. glabrata* (4 strains), *C. guilliermondii* (3 strains), and the other *Candida* species (6 strains).
- Agents used: micafungin (17 cases), liposomal AmB (5), itraconazole (2), and voriconazole (2).
- 85% of the causative *Candida* species of micafungin breakthrough were susceptible to micafungin. 75% of the strains were wild type for the administered agents.
- Systemic steroid administration and longer (≥ 5 days) severe neutropenic phase were independent risk factors of the breakthrough candidemia.

Antimicrob Agents Chemother 2017, doi:10.1128/AAC.01791-16

Plotted cost-effective plane for using posaconazole as antifungal prophylaxis in different countries

- Prophylaxis does NOT always cost more.
- Prophylaxis for higher-risk populations does NOT always do better.
- Disease- and country-specific cost-effectiveness is required.

2016 Taiwan guidelines. Data from Pharmacoeconomics 2011;29:251-68

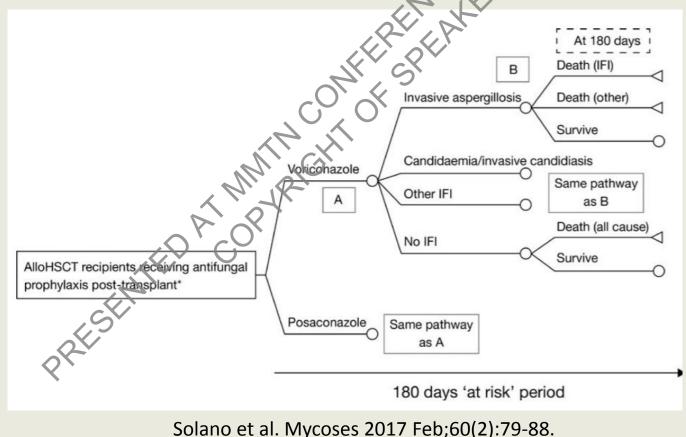
Costs and health outcomes

- Network Meta-analysis of 21 randomized controlled trials
- Resource use and costs obtained from the Singapore health care institution.
- All triazole antifungals except itraconazole capsule were effective in reducing invasive fungal infections (IFIs) .
- Posaconazole was more efficacious in reducing IFIs and all-cause deaths than were fluconazole and itraconazole.

AML		Effectiveness ^a				ICER	
Treatment	Total cost (SGD)	No. of IFIs	No. of IFIs avoided	LY	LY saved	Per IFI avoided	Per LY saved
Fluconazole	4,186.91	0.100		5.197	-		
Itraconazole capsule	5,748.09	0.135	-0.035	5.134	-0.063	Dominated	Dominated
Itraconazole solution	4,172.47	0.066	0.034	5.258	0.061	Dominant	Dominant
Posaconazole	4,909.45	0.03	0.063	5.310	0.113	11,469	6,394
Voriconazole	14,095.61	0.049	0.051	5.288	0.091	194,288	108,887
HSCT	K	Effectivenessa				ICER	
	Total cost (SCD)	No. of IFIs	No. of IFIs avoided	LY	LY saved	Per IFI avoided	Per LY saved
Fluconazole	4,271.27	0.100		6.247			
Itraconazole capsule	5,893.90	0.135	-0.035	6.172	-0.075	Dominated	Dominated
Itraconazole solution	4,697.85	0.066	0.034	6.320	0.073	12,546	5,844
Posaconazole	5,960.76	0.037	0.063	6.383	0.136	26,817	12,423
Voriconazole	17,442.68	0.049	0.051	6.357	0.110	258,263	119,740

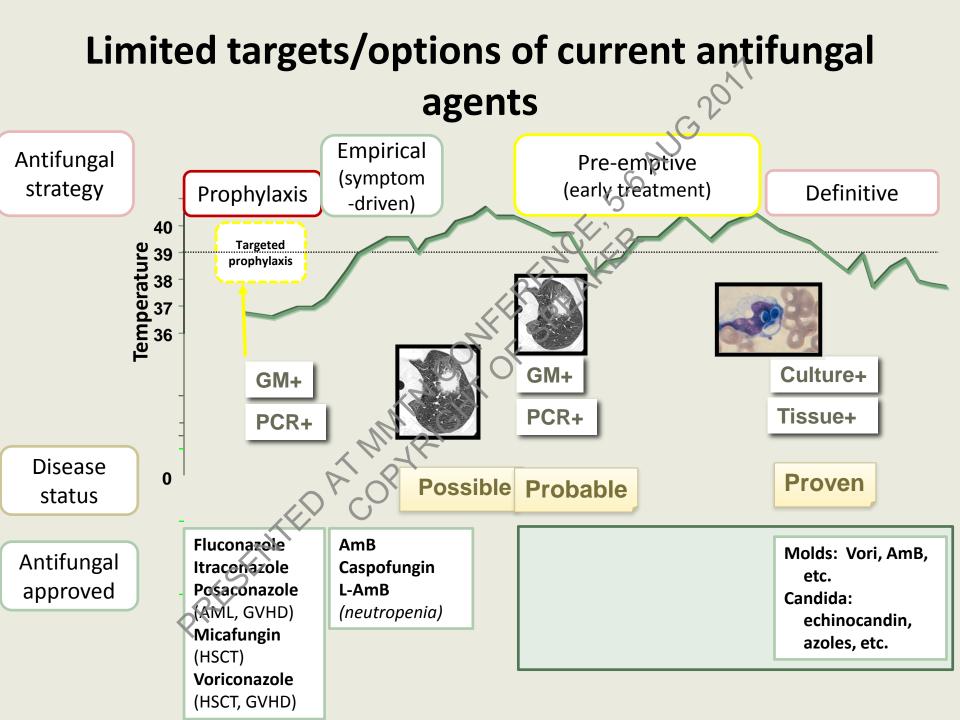
^a IFI, invasive fungal infection; LY, life-years; ICER, incremental cost-effectiveness ratio.

Zhao et al. Antimicrob Agents Chemother 2015;60:376


luconazole

Placebo

Itraconazole capsule


Economic evaluation of azoles as primary prophylaxis for the prevention of invasive fungal infections in Spanish patients undergoing alloHSCT

Cost-effectiveness analysis decision-analytic model structure from the perspective of the Spanish National Health System

Economic evaluation of azoles as primary prophylaxis for the prevention of invasive fungal infections in Spanish patients undergoing alloHSCT (cont.)

- Generic itraconazole was the least costly AFP (€162) relative to fluconazole (€500), posaconazole oral suspension (€8628) or voriconazole (€6850).
- Compared with posaconazole, voriconazole was associated with the lowest number of breakthrough IFIs (36 vs 60); thus, the model predicted fewer deaths from breakthrough IFI for voriconazole (24) than posaconazole (33), and the lowest predicted costs associated with other licensed antifungal treatment and IFI treatment in a cohort of 1000.
- Voriconazole resulted in cost savings of €4707 per patient compared with posaconazole. Itraconazole demonstrated a high probability of being costeffective.
- As primary AFP in alloHSCT patients 180 days posttransplant, voriconazole was more likely to be cost-effective than posaconazole regarding cost per additional IFI and additional death avoided.

Risk stratification is used to kelp arget antifungal prophylaxis to those who would most benefit from the work of the parts that the parts the par

High-risk disease population for IFI

- Chronic granulomatous disease
- Allologous HSCT with graft versus host disease
- Myelodysplastic syndrome treated with remission induction therapy
- Acute myeloblastic leukemia treated with remission induction therapy
- Lung or heart-lung transplantation
- Small bowel transplantation
- Liver transplantation
- Allogeneic HSCT without graft versus host disease
- Acute myelobalstic leukemia during consolidation therapy
- Acute lymphoblastic leukemic.
- Heart transplantation
- Chronic lymphocytie leukemia
- Myelodysplastic syndrome
- Multiple myeloma
- Chronic obstructive pulmonary disease with acute exacerbation
- AIDS

h

С

۲

e

a

S

e

h

۲

S

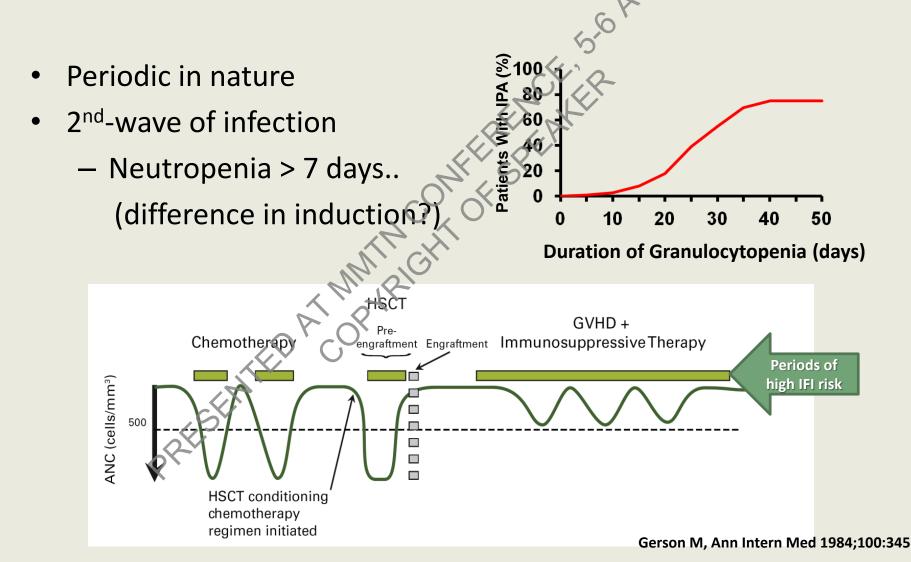
k

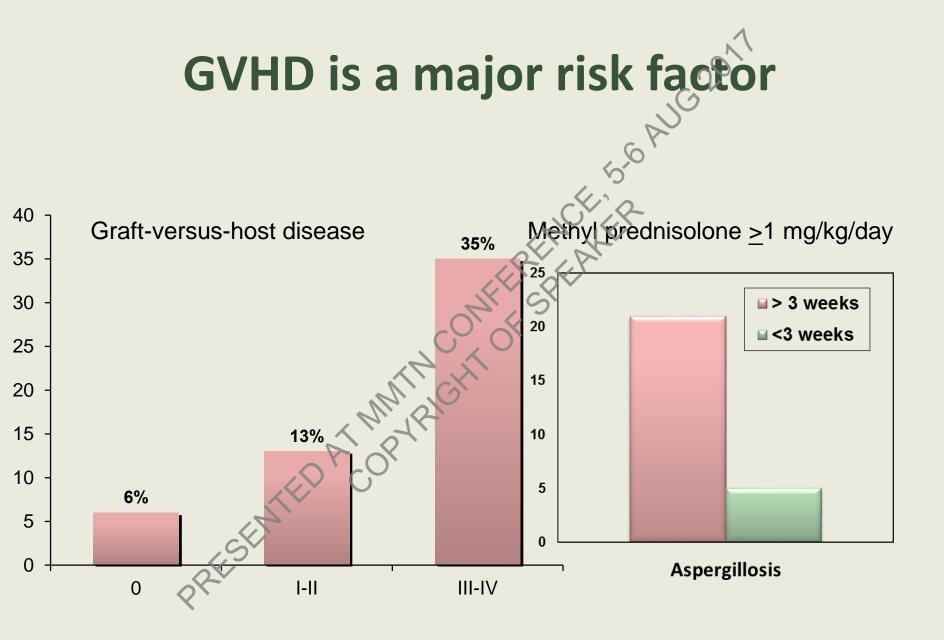
- Non-Hodgkin's lymphoma
- Autologous hematoploietic stem cell transplantation
- Kidney transplantation
- Solid tumors
- Auto-immune disorders

High

Intermediate

Low


Mold and Yeast Infections in Patients with Hematological Malignancies Incidence of IFI varied by primary diseases


					N	
HM	No. of	No. of IFI	M	olds (Yeas	sts
	patients	(incidence)	No. cases	Incidence	No. cases	Incidence %
AML	3012	373 (12%)	239	7.9	134	4.4
ALL	1173	77 (6.5%)	51	4.3	26	2.2
CML	596	15 (2.5%)	CA X	2.3	1	0.2
CLL	1104	6 (0.5%)	A A	0.4	1	0.1
NHL	3457	54 (1.6%)	30	0.9	24	0.7
HD	844	6 (0.7%)	3	0.35	3	0.35
MM	1616	7 (0.5%)	4	0.3	3	0.2
Total	11802	538 (4.6%)	346	2.9	192	1.6

- n = 3228 (1249 allo, 1979 auto) pts from 11 Italian HSCT centers
- Incidence of proven/probable IA: 7.8% in alloHSCT
- Attributable mortality in alloHSCT patients: 77.2%

Pagano L et al (Italian Multicenter Study), Haematologica 2006;91:1068-75; Clin Infect Dis 2007;45:1161-70

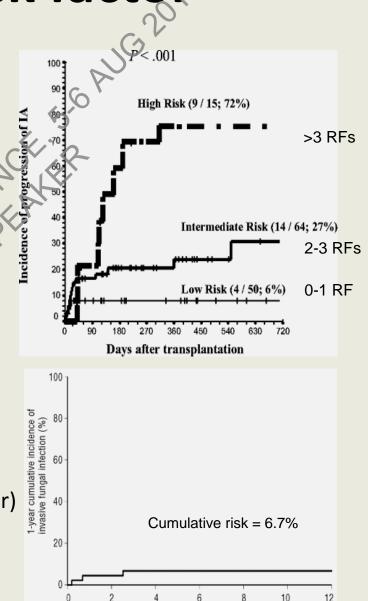
Neutropenia remains the most important risk factor

Jantunen E, Bone Marrow Transplant 1997;19:801

Grow W, Bone Marrow Transplant 2002;29:15

Prior IA is a risk factor

Recurrence risks


- 1. Longer neutropenia
- 2. Advanced underlying disease
- 3. Short interval from IA to transplant (<6 wks)
- 4. Ablative conditioning regimen
- 5. CMV disease
- 6. Marrow or cord blood as graft
- 7. Acute GVHD

Martino R, Blood 2006; 108: 2928

Voriconazole reduce the risk for recurrence, the VOSIFI study

- 45 pts with prior IFI (31 IA, 5 *Candida*, 6 other)
- 2 relapses (1 Candida, 1 Scedosporium) & 1 new mucormycosis

Cordonnier C, Haematologica 2010;95:1762

Months

Changes in population at risk of IFI in hematology

Change in patient population	Reasons/Treatment
Prolonged survival in immunocompromised condition (elder, relapsed/refractory)	Better supportive care
Higher risk in transplantation	Haploidentical HSCT; Cord blood transplantation; CD34-selected or T-cell depleted graft
T-cell immunosuppression	New immunosuppressants (FK- 506, etc); Chemotherapy agents (fludarabine, alemtuzumab, etc)

Cutaneous T cell lymphoma with acute leukemic change

Liu et al. Med Mycol. 2011;49:872

CD52 monoclonal antibody, Alemtuzumab

Risks can vary widely even with the same disease

	Auberger et al 2008	Hahn-Ast et al 2010	^{\$} Malagola et al 2008	Hammond 2010	Neofytos et al 2013	Kurosawa 2012 ¹⁸	NTUH 2015
Regions	Austria	German	Italy	US	US	Japan (Hokkaido)	Taiwan
Year	1995-2004	1995-2006	1997-2002	2004-2006	2005-2010	2006-2008	2004-2009
Study design	Prospective Single-center	Retrospective Single-center	Prospective Multi-center	Retrospective Single-center	Prospective Single-center	Retrospective Multi-center	Prospective Single-center
Disease	All HMs	All HMs	Fresh AML	Fresh AL	Fresh AML	All HMs (597 SCT)	Fresh and relapsed AL
Patient number	1095	592 (1693 C/T)	224	231	254	2821	401 (507 C/T)
Systemic antifungal prophylaxis	Fluconazole Itraconazole Lip-AmB	Oral AmB Itraconazole	Not remarked	No	No	Various	No
Chemotherapy regimens	C/T* Auto-SCT, Allo- SCT	C/T* Auto-SCT	Fludarabine based induction	Standard induction	Standard induction	C/T* SCT	Induction
IFI Incidence		Ď					
All fungi	15.0%	8.8%	4% [@] (induction) 2% [@] (consolidatio n)	5.9% (30 days) 11.1% (100 days)	48.4%	1.3% [@] (for all) 0.4% [@] (for C/T)	11.4% [@] 32.1% ^{&}
Candida		, 4,			5.5%		
Mold	Ċ				42.5%		
Mortality [%]							
All-cause	72.0%			42%	23.7% (6 months)		28.2%
IFI-attributed	25.1%	40.9%	60% (induction) 80% (consolidation)			22.2% (for C/T) 50% for SCT	25.8%

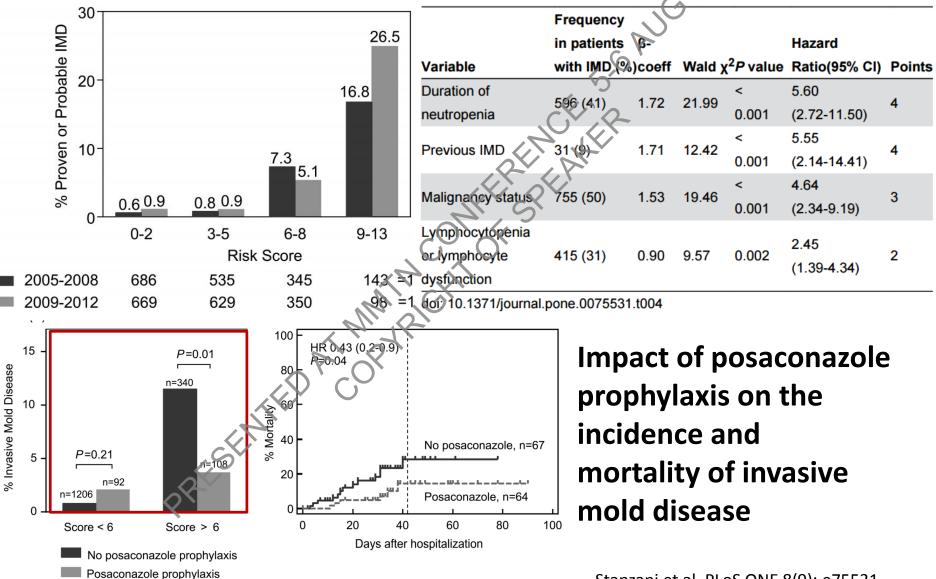
Pretreatment risks assessment for IFDs

Immunogenetic status

Toll-like receptors polymorphism C-type lectin receptor polymorphism Mannose binding lectin polymorphism Plasminogen polymorphism Others

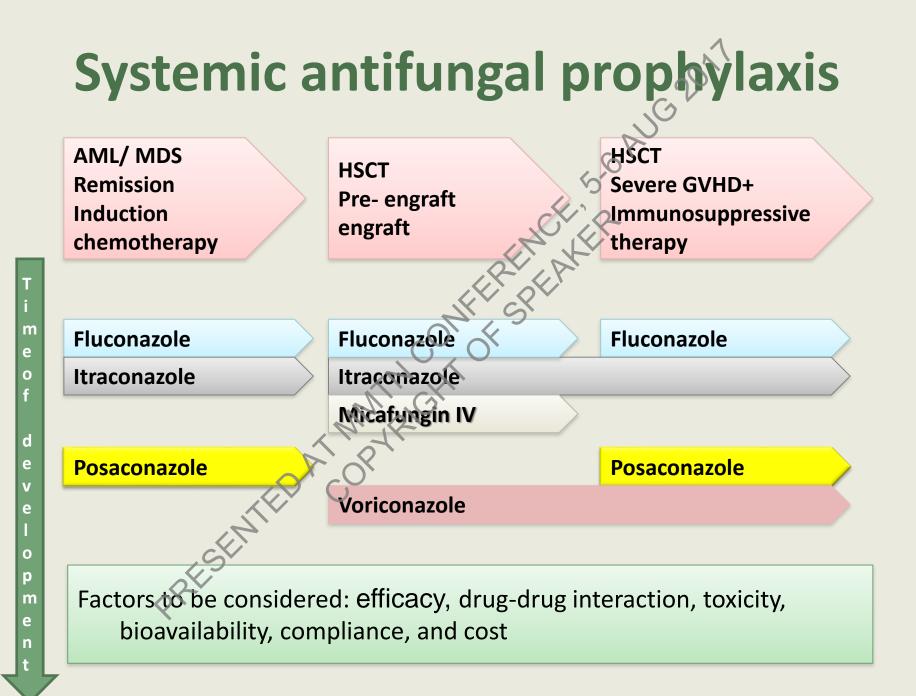
Underlying conditions

Neutropenia Progressive cancer GvHD Anticancer chemotherapy Steroids T-cell suppressors


Primary diseases

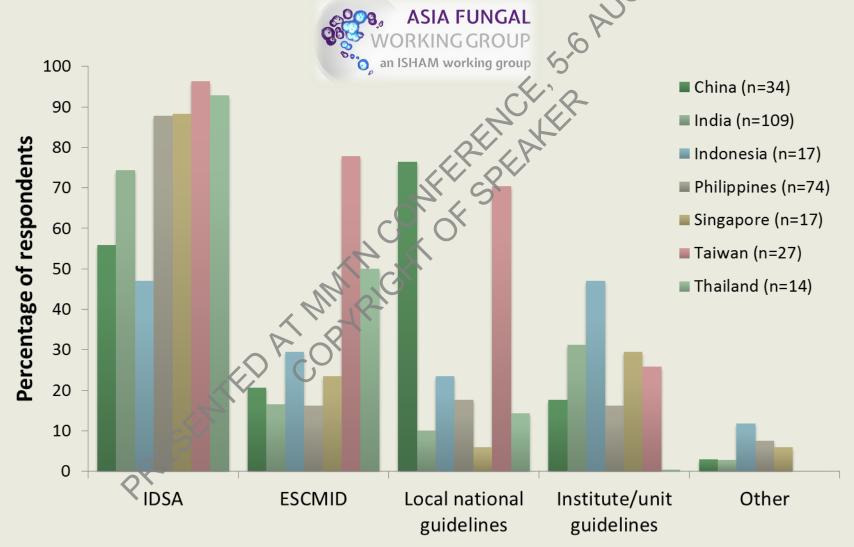
Hematological malignancy Allo HSTCT, solid organ transplant Solid tumors, others


Geo-climate Construction work Tobacco or cannabies use Contaminated food or spices Pets, potted plants, and gardening No HEPA filtered air during HSCT Environmental factors Diabetes Iron overload Trauma, burns Renal impairment Metabolic acidosis Prior respiratory disease Other factors


Pagano L, et al, Haematologica 2006;91; Clin Infect Dis 2007;45:1161; Drugs 2007;67:1567; Herbrecht R, et al 2012 Ann. N.Y.Acad.Sci; Johnson MD et al. CID 2012;54:502; Smeekens SP et al. EMBO Mol Med 2013;5:805; Cunha C, et al. NEJM 2014;370:5:421

A Risk Prediction Score for Invasive Mold Disease in Patients with Hematological Malignancies

Stanzani et al. PLoS ONE 8(9): e75531.



Systematically developed statements to assist practitioners and patients in making decisions about appropriate health care for specific clinical circumstances.

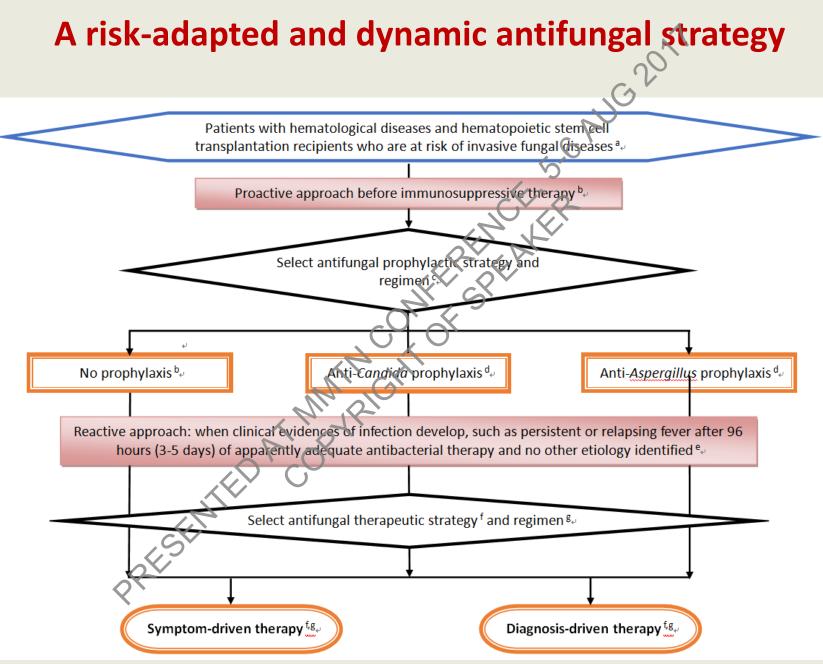
GUIDELINES

Fungal infection management guidelines

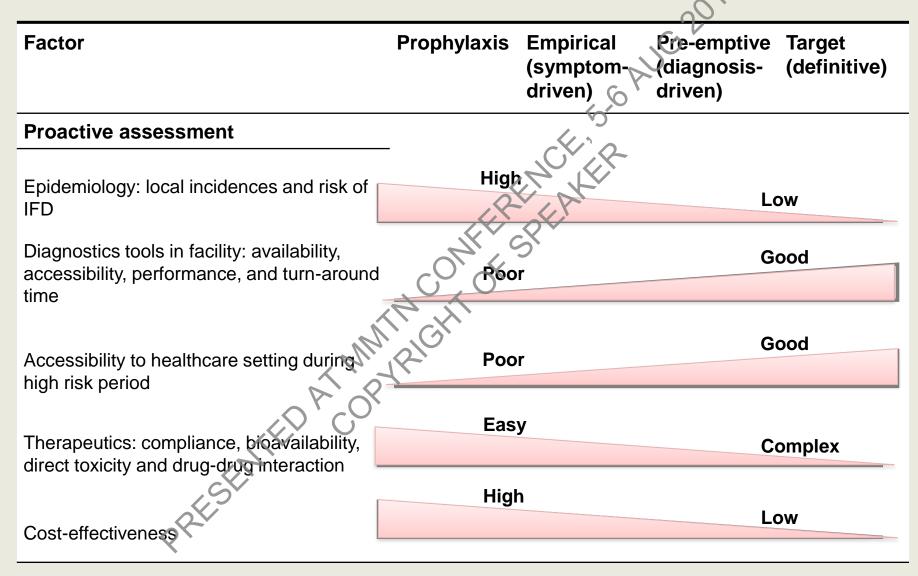
Number of responses 292 (multiple answers permitted)

Implementation of antifungal prophylaxis varied by country

	AML	AlloHSCT
China (n=34)	17.7%	27.3%
India (n=109)	44,4%	36.1%
Indonesia (n=17)	17.7%	0
Philippines (n=74)	MM R194.9%	25.0%
Singapore (n=17)	35.3%	35.3%
Taiwan (n=27)	46.2%	73.1%
Thailand (n=14)	14.3%	28.6%



Review Article


From Evidences to Guidelines

- Grading the quality of evidence (very low, low, moderate, and high) and the strength of the recommendation (weak or strong).
- The strengths of recommendations are based on, but not limited to:
 - 1. quality of evidence
 - 2. balance between benefits (e.g., treatment efficacy and benefit of early intervention) and harms (e.g., potential toxicity and drug-drug interaction and negative impact of delay in intervention);
 - 3. disease burdens,
 - 4. resources and cost.

2016 Taiwan guidelines

Selection of antifungal strategy

General recommendations

- Strategies to reduce risk of invasive fungal diseases through modifying risk factors such as control of underlying diseases or conditions, environmental control to reduce exposure to fungi, and patient education for personal hygiene and food safety are important before adapting prophylactic strategy.
- Prophylactic use of anti-mold agents reduces the yields of galactomannan antigen assay and molecular diagnostics.
- Prophylactic strategy may increase the uncertainty or difficulty of managing subsequent fungal infections
- If the risk of invasive mold diseases is low, may use fluconazole as antifungal prophylaxis and combine with a mould-directed diagnostic approach.
- Duration of therapy is based on recovery from neutropenia or immunosuppression.

Primary prophylaxis

Primary prophylaxis									
Diagnosis or status of the hosts	Primary	Alternative	Comments						
AML and MDS patients receiving induction chemotherapy	Nystatin (S/L)*	Posaconazole (S/H) Itraconazole (W/H) Fluconazole 50-400 mg (W/H) AmB-d (W/H)	Clinical trials for fluconazole showed various results. continued until myeloid reconstitution has occurred.						
Allogeneic HSCT, initial neutropenic phase	Nystatin (S/L) Fluconazole 400 mg iv or po (S/H) Micafungin 50 mg (W/H)	Voriconazole 200 mg (4 mg/kg) bid po (W/H) Itraconazole (W/H) AmB-d (W/H)							
Allogeneic HSCT, GVHD phase	Nystatin (S/L) Posaconazole (S/H) Voriconazole (S/H) dation (strong, weak)/evic		Prophylactic use of anti- mold agents is recommended in patients with severe GVHD under treatment with high dose steroid or equivalent immunosuppressants ⁴⁹						

*Grading of recommendation (strong, weak)/evidence (high-, low-quality) 2016 Taiwan Guideline

Secondary Antifungal Prophylaxis

- Second prophylaxis is strongly recommended in patients with previously defined IFD during a period of myelosuppression (eg, during induction chemotherapy in AML patients) (S/L).
- The choice of agent depends on etiology of prior infection, and in part upon the need to avoid drug interactions while chemotherapy is being given.
 - Voriconazole is the first-line agent for Aspergillus spp and has been best studied as secondary prophylaxis, but mold-active azoles are usually not given concomitantly with certain chemotherapy regimens with hepatically metabolized drugs.

Secondary Antifungal Prophylaxis

- Duration:
 - at least until myeloid reconstitution has occurred
 - follow-up imaging and fungal markers obtained 2~4 weeks after antifungal prophylaxis has been discontinued to ensure that reactivation has not occurred.
 - Patients undergoing repeated courses of myelosuppressive chemotherapy should generally continue secondary prophylaxis until completion of the course of chemotherapy.

Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by IDSA. Clin Infect Dis. 2011;52(4):e56.

Introduce concept of health economics and provides data translated from local disease burdens

				G				
Patient population	Study design	Study period	Study number	IFD category	IFD incidence	NNT	Reference	
Adult AML ⁶	Prospective,	2004 2000	200	Proven/ Probable	10.7%	12 ^a	_ Tang JL, et	
Induction chemotherapy	Single center	2004-2009	298 patients	Proven/ Probable/ Possible	34.6%	3 ^a	al ⁶	
Adult AML ⁶⁸ Induction chemotherapy	Retrospective, Single center	2010-2014	29 patients	Proven/ Probable	17.9%	6 ^a	Yang XY, et al ⁶⁸	
Pediatric AML ⁶⁹			$\overline{0}$					
Induction chemotherapy	Prospective,	2010 202	28 courses	Proven/	17.9%	6	Yeh TC et	
Post-remission high dose	Single center	2010-2012	76 courses	Probable	7.9%	13	al ⁶⁹	
Post-remission modest dose		M. 2	56 courses		1.8%	56	_	
Pediatric ALL ⁶⁹		121						
Induction chemotherapy	Prospective,	2010-2012	62 courses	Proven/	14.5%	7	Yeh TC, et	
Consolidation chemotherapy	Single center	2010-2012	59 courses	Probable	0%	NA	al ⁶⁹	
Re-induction chemotherapy		$\mathbf{\vee}$	59 courses		1.7%	59		
Abbreviations: IED invasive fungal diseases: NNT number needed to treat								

Abbreviations: IFD, invasive fungal diseases; NNT, number needed to treat.

^aNNT is calculated on the inverse of the absolute risk reduction with antifungal prophylaxis, ⁶⁷ and the incidence of IFDs with antifungal prophylaxis is based on the data from the study by Cornely, et al.⁴⁷

- Tang JL et al. *PLos One* 2015;10:e0128410
- Yang XY & Chen WT. J Microbiol Immunol Infect 2015;
- Yeh TC et al. *Cancer* 2014;120:1255

2016 Taiwan Guidelines

Summary

- Debates remain regarding the universal systemic primary prophylaxis due to resistance, toxicity and cost.
- Primary prophylaxis has been proven to be cost-effective in selected high-risk patients with hematologic malignancies.
- Selection of prophylactic strategy should be individualized based on risk-benefit assessment at each hospital, or, even for each patient, after considering factors such as: epidemiology, diagnostics, therapeutics and cost-effectiveness.
- Selection of a prophylactic agent should be based on knowledge of the host, the antifungal agents, and the strategies available. Consideration should be given to the efficacy, bioavailability, toxicity, drug drug interaction, compliance, and cost.

Thanks for your attention.

1

YC Chen at NTUCM