

Mucormycosis & pythiosis – new insights

Dr Ariya Chindampern

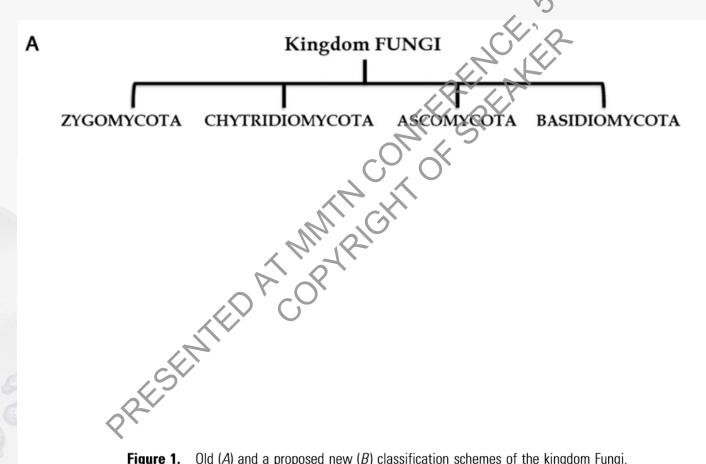
Associate Professor

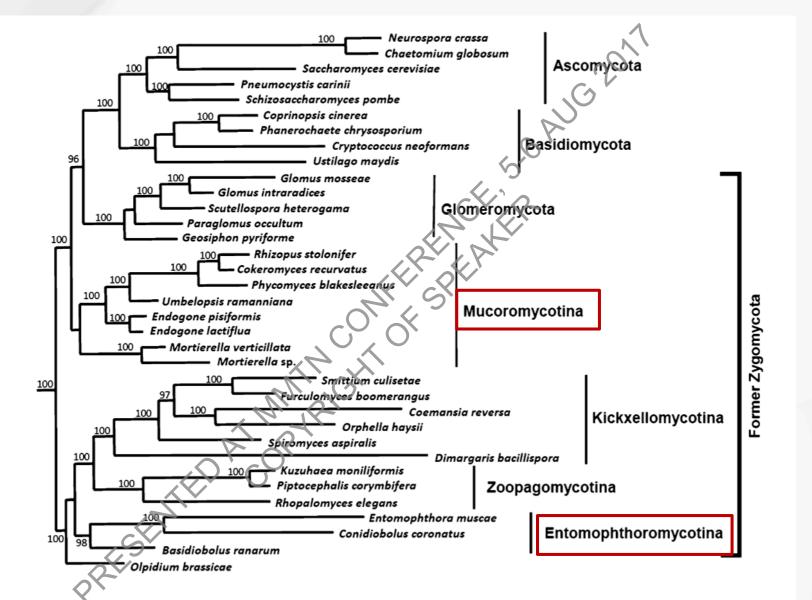
Department of Microbiology

Faculty of Medicine, Chulalongkorn University

Bangkok, Thailand

Outline


- Introduction
- Recent Taxonomy
- Trend of incidence
- Epidemiology between developed and developing countries
- Pathogenesis: role of CotH receptor agents –agents causing infection
- Treatment : Isavuconazole


Taxonomy of Fungi Causing Mucormycosis and Entomophthoramycosis (Zygomycosis) and Nomenclature of the Disease: Molecular Mycologic Perspectives

Kyung J. Kwon-Chung

Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

Figure 1. Old (A) and a proposed new (B) classification schemes of the kingdom Fungi.

Figure 3. Phylogenetic tree provided by T. Y. James at the University of Michigan, Ann Arbor, which was based on unpublished results from the AFTOL (Assembling the Fungal Tree of Life) project [10]. Results are similar to those reported by James et al [5], but additional basal taxa are included.

Mucormycosis VS Entomophthoromycosis

	Mucormycosis	Entomophthoromycosis
Synonym	Phycomycosis, Zygomycosis	R)
Infection - Host, mostly	Immunocompromised: HM, HSCT, SOT, Diabetic ketoacidosis	Immunocompetent
Clin. Manifestation	Sinus, Pulmonary, Cutaneous, GI, Acute thrombosis	Chronic & Subcutaneous
Treatment	AmB, posa.	Itra.
Route of infection	Inhalation, ingestion, or through direct inoculation via abraded skin	Abrasion
Pathogenic form	Aseptate hyphae 3-25 um, thin wall, non dichotomous branching	Aseptate hyphae surround by thick eosinophilic sleeves
Habitat	Decaying organic substrate	Amphibians, GI of Lizard, decayed plant
Distribution	World wide	Tropical & Subtropical
Pathogen	Subphylum Mucoromycotina: Order Mucorales: <i>Rhizopus, Mucor,</i> <i>Lichtheimia (Absidia), etc.</i>	Subphylum Entomophthoromycotina: Order Entomophthorales: <i>Basidiobolus,</i> <i>Conidiobolus</i>

Subcutaneous Saksenaea vasiformis infection presenting as disfiguring facial plagues

- 51-year-old labourer
- 2 mo. painless mass, normal nasal cavity
 & nasopharynxgeal mucosa
- History:
 - 4 mo. before: shallow abrasion
 - Abt & debridement mass enlarged
 - No systemic symptom

AmB (1.2 mg/kg/d) & Itra (600 mg/d) 40 d.

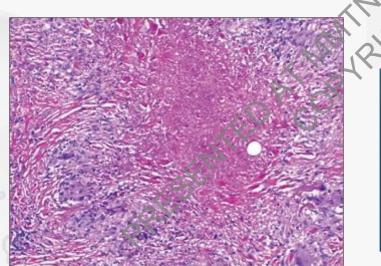


Fig. Diffuse granulomas in the reticular dermis & subcu. tissue w necrobiotic collagen. H&E, x200

Diffuse erythematous infil. w skin thickening over forehead, both eyelids & nose

After AmB & Itra

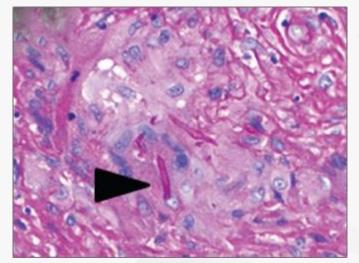
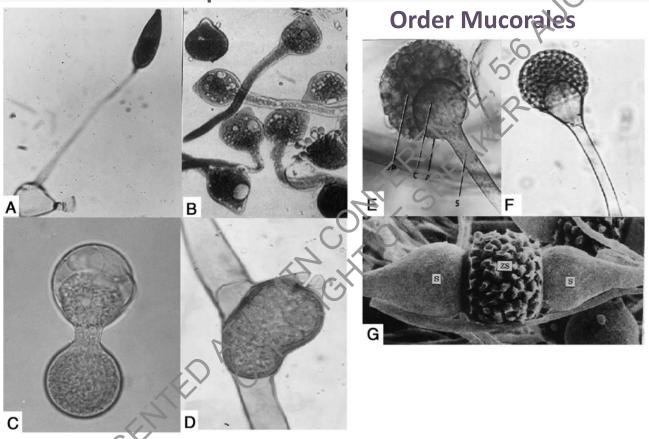
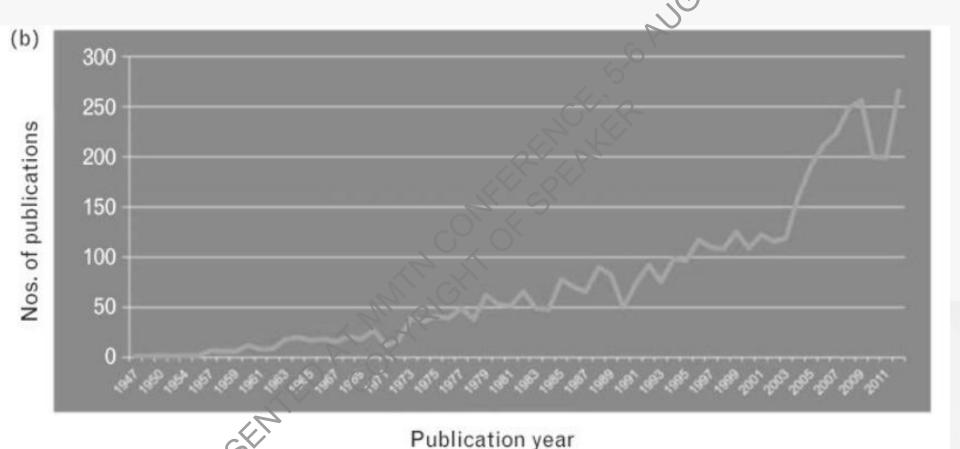
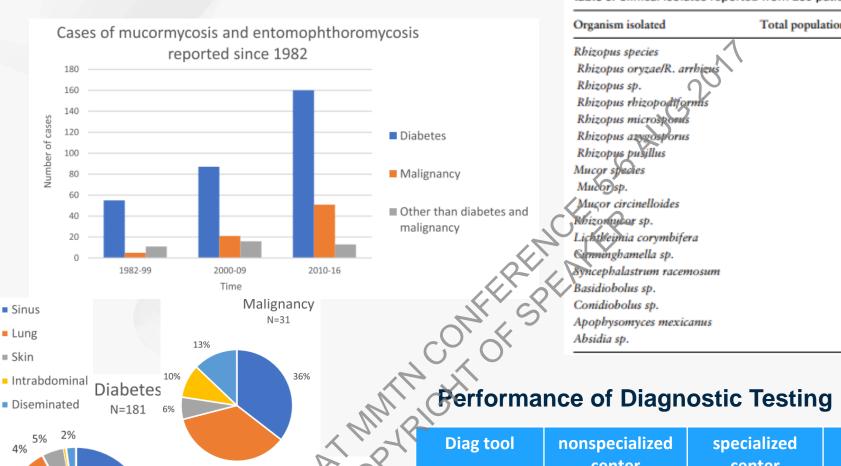



Fig. Aseptate in multinucleated giant cells, PASx200

ITS1-2 region ID.


Anamorph & Teleomorph Characters in Mucorales VS Entomophthorales

Order Entomopthorales


Figure 4. Morphology of conidia and zygospores (scale bar, 20 μm). *A*, Reproduction of a conidium in *Basidiobolus ranarum*. A conidium discharged onto a Petri dish cover germinated and produced a conidiophore bearing a single conidium. *B*, Primary conidia of *Conidiobolus incongruus* germinated to produce long hyphrae bearing subglobose conidia [38]. *C*, Secondary conidium formation by replication in *Conidiobolus coronatus*. *D*, Zygospore of *Basidiobolus ranarum*, with a characteristic beak, is produced by the fusion of 2 adjacent hyphal cells. *E*, Sporangial structure of *Rhizopus* species showing the sporangiophore (*S*), apophysis (*A*), columella (*C*), and sporangiospores (*SP*). *F*, Sporangium of *Lichtheimia* (*Absidia*) *corymbifera*. *G*, Electron microscopy of Zygospore (*ZS*) of *Rhizopus* species produced between 2 suspensors (*S*) originating from hyphae of 2 sexually compatible strains (courtesy of Dr S. L. Flegler). Images in *A* and *C*–*F* are from Kwon-Chung and Bennett [33].

Annual number of published articles on mucormycosis since 1975 (SCOPUS, accessed July, 2013)

Underlying Conditions in Mucormycosis patients in various studies

									0,	
		0		Unde	rlying	conditio	ns % of	cases		
Location	Period	Cases No.	DM	НМ	SOM/ SOT	DFO	HIV	Autolm/ Cortico	Trauma / no	Ref.
Global	1885- 2004	929	36.0	21.0	7.0	6.0	2.0	1.0	19.0	Roden et al. 2005
France	1997- 2006	53	16.2	17.3	7.1		4.9		54.4	Bitar etal. 2009
Italy	2004- 2007	60	18	61.7	1.7	KP O	1.7	3.3	40.0	Pagano et al.2009
Belgium	2000- 2009	31	6.4	77.0	13.0	K S	3.0		13.0	Saegeman et al.2010
Global	2006- 2009	41	17.1	63.4	9.8					Ruping et al. 2009
Europe	2005- 2007	230(>1-8%)	17.0	55.0	9.0	1.0	2.0	7.0	20.0	Skiada et al., 2011
India	2006- 2007	178	73.6	O ^{R.1}	0.6				19.1	Chakarbarti et al. 2006
Spain	2007- 2015	19	0	52.6					52.6	Guinea et al.2017
Mexico	1982- 2016	9 418	72	18 ^(5/77DM) 93 (HM)					9.3	Corzo-Leon et al. 2017

1(0.5)

1(0.5)

Diag tool	nonspecialized center	specialized center	Total
Pos. Direct smear/cytology	73/76 (95%)	158/158 (100%)	231/234 (98%)
Pos. Culture	120/211 (57%)	142/158 (90%)	262/369 (71%)

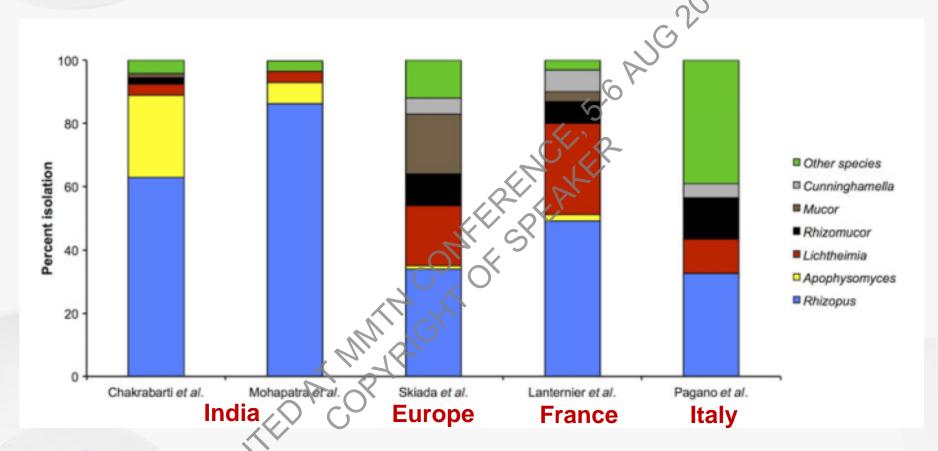
^{- 158/369 (41%)} cases were reported by a specialized center,

88% 27% Figure 3. Clinical presentations of mucormycosis and entomophthoromycosis in Mexico. Pie charts showing the clinical presentations by underlying condition using proportions

15%

Diseminated

N=181


6%

27%

Corzo-Leon DE., et al. Med Mycol.2017, 0, 16

^{- 211} cases by non specialized center

Etiologic agents of Zygomycosis (Mucormycosis)

The data shown are from studies by Chakrabarti et al., Mohapatra (India)., Skiada (Europe), Lanterniaer et al. (France), and Pagano et al. (Italy)

Invasive fungal dis. of the sinus and orbit: Mucormycosis VS Aspergillosis

- Retrospective study a tertiary care eye & ear hosp. MA, USA, 1994-2014
- 24 confirmed cases by histopath.
 - Mucormycosis (14: Orbital dis. 11, Sinus 3); mix w Asp. 1,
 - Aspergillosis (7: Orbital dis. 1, Sinus 6); Dematiaceous infection 1 (sinus)
- Higher mortality rate in Mucormycosis patient (71%) over Aspergillosis (29%) (p-0.16)
- All orbital involvement pt and/or mucormycosis -more aggressive
 - Immunosuppress or inadequate control DM<
 - After enter the sinus-access the intracranial space –ophthalmic artery, optic canal/superior orbital fissure

	Mucormycosis	Aspergillus
Total patients (male)	14 (9)	7 (5)
Mean age (range)	54 (33–80)	50 (30–68)
Mortality	10/14	2/7
Time from diagnosis to death	26.6 days (mean)	Mean 47 days (3 days in one patient, 3 months in one patien
Risk factor (mortality)	Diabetes: 5 (2)	Diabetes: 0
•	Diabetes+immunosuppression: 3 (3)	Diabetes+immunosuppression: 3 (1)
	Transplant without diabetes: 3 (3)	Transplant without diabetes: 1 (0)
C	Other immunosuppression: 3 (2)	Other immunosuppression: 2 (1)
47	Sinusitis without other risk factors: 0 (0)	Sinusitis without other risk factors: 1 (0)
Orbital invasion	11/14	1/7
Mortality in orbital cases	9/11	1/1

Table 2. Epidemiological features of rare mould species

Species	Diseases	Specific characteristics	References
Mucorales	IFD in patients with risk factors	Increasing prevalence in haematological patients Higher most ality than apparellacions.	42
Fusarium spp.	Local and disseminated mycoses	 Higher mortality than aspergillosis Resistance to voriconazole Leading cause of IFD in haematological patients 	43, 44
	in patients with risk factors	in some areas (Brazil) • Mortality > 75% in IFD cases	
Scedosporium apiospermum	Colonization, local infections and IFDs	 Unpredictable resistance to some antifungal agents More common in temperate areas High mortality in IFD cases 	43, 45
complex Scedosporium	Colonization, local infections and IFDs	• Voriconazole is the most potent antifungal agent against them • More common in southern Europe, Australia and California	43, 46
prolificans		Mortality >90% in IFD casesMultiresistant organism	
Other rare mould species	Colonization, local infections and IFDs	 Unreliable data on prevalence and mortality Identification at species level and AST are compulsory for correct management 	43, 47

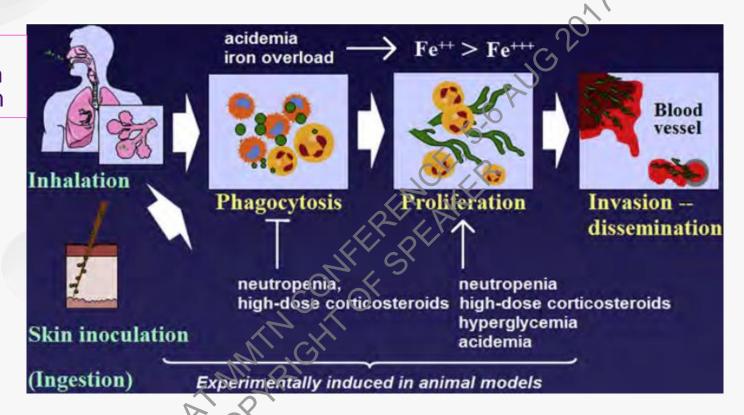
IFD, invasive fungal disease; AST, antitungal susceptibility testing.

RHS in pulmonary mucormycosis

- Of 189 IFIs (proven, probable) with pneumonia at MDACC
- 37 had zygomycosis
- 8/189 had reversed halo sign, of whom? had pulm zygo
- Reversed halo sign seen in 19% of pulmonary zygomycosis
- RHS usually upper lobe, usually solitary, rarely a/w effusion, not a/w adenopathy

Wahba H et al. CID 2008;46:1733

Legouge C et al. CID 2014;58:672


Laboratory Diagnosis

- Collect specimens: pus, bloody tissue, debris
- Transportation : Not on ice
- Processing :
 - Cut into small pieces in sterile plate
 - O Direct examination: KOH preparation, KOH Calcofluor stain REPORT
 - Other common stain in Microbio ab. Gram stain, AFB stain -REPORT
 - O Histopathology: tissue reaction (H&E, PAS); shape (GMS)
 - Culture: SDA, SDA+abt, SDB, Blood agar 2-3 days, 30&35C
 - o Identification: classical (colony & sporulation)/ PCR/ MALDI-TOF
- Serology : Negative GM & BG

Pathogenesis of Mucormycosis

Sizes

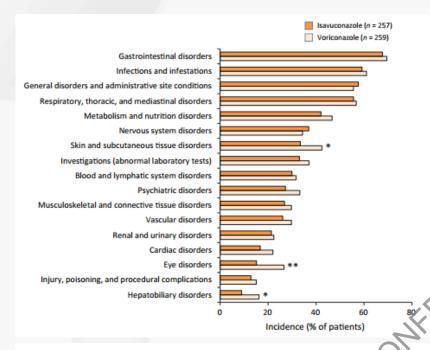
- 3-11um
- >10 um

- IR: Steriod: impair of migration, ingestion. Phagolysosome fusion
- Hemat. Malignacies: Neutropenia: impair chemotaxis & diminish fungicidal mechanisms
- DKA: weak neutrophil, low pH, higher glucose level, free iron
- Mucorales is able to extract iron from desferrioxamine.

Pathogenesis - angioinvasion

CotH proteins on the fungal surface promote angioinvasion.

CotH proteins on the surface of Mucorales specifically bind to GRP78 on the surface of host endothelial cells. This interaction facilitates fungal invasion of the cell. Damage to the endothelial cells promotes angioinvasion and dissemination


- ❖ Bacterial spore coat protein homolog prt. present on the *R. oryzae* cell surface mediate a specific interaction with GRP78, promoting fungal adherence & invasion.CotH3 –most important.
- ❖ Heterologous expression of R. oryzae CotH prt. resulted in mammalian cell invasion by the non pathogenic yeast S. cerevisiae.
- ❖ Interuption of CotH fn. in R. oryzae disrupted its invasive potential.
- Promising therapeutic target ???

How is mucormycosis treated?

- Needs to be treated with prescription antifungal medication,
- Intravenous injection: AmpB, posa, isa) or
- Oral (posaconazole, isavuconazole).
- Often, requires surgery to cut away the infected tissue (CDC, Dec.2015)

Isavuconazole:

- Broad spectrum 2nd gen. triazole
- Inhibit CYP enzyme laosterol 14-alpha-demethylase (CYP51) –blocking synthesis of ergosterol
- Metabolites via CYP3A4 & CYP3A5 which may alter the plasma concentrations
- a moderate inhibitor of CYP3A4, and a mild inhibitor of P-glycoprotein (P-gp), and organic cation transporter 2 (OCT2)

Treatment-emergent adverse event in the phase III SECURE trial, grouped by system organ class. AE-≥15% of Pt. in either treatment gr. *p<0.05, **P<0.01

MIC breakpoint EUCAST	susceptible	resistant
A. fumigatus	<u>≤</u> 1 ug/ml	<u>≥</u> 1 ug/ml
A. terreus	<u><</u> 1 ug/ml	<u>≥</u> 1 ug/ml
A. nidulans	<0.25 ug/ml	≥0.25 ug/ml

- Isavuconazole: good in vitro activity against Rhizopus & Rhizomucor
- However, its activity is limited for other Mucolares exspecially Mucor circinelloides
 - Overall, MIC of Mucorales higher than Aspergillus group

Table 1 In vitro activity of isavuconazole against clinically important species of Appergillus and Mucorales (adapted from Ref. [15])

Organism	No. of isolates	MIC range (pg/mL)	MIC ₉₀ range ^a (μg/mL)	MFC range ^a (µg/mL)
Aspergillus species		Mark.		_
A. flavus	97	0.23-16	1-16	0.5-4
A. fumigatus	939	0.06-4	0.5-2	0.125-4
A. nidulans	70	0.06-2	1	NA
A. niger	84	0.125 to >16	2-4	0.25 to >8
A. terreus	222	0 25 to >16	0.5-4	0.25-2
Mucorales		O		
Cunninghamella spp.	25	0.12 to >8	>8	2 to >16
Lichtheimia spp.	NI	0.03 to >8	1 to >8	4 to >16
Mucor circinelloides	16	2-8	8	NA
Mucor spp.	107	<0.015 to >8	2 to >8	2 to >16
Rhizomucor spp.	38	<0.015 to >8	>8	2 to >8
Rhizopus spp.	189	0.12 to >8	1 to >8	1 to >16
Syncephalastrum spp.	2	0.125-4	NA	1–16

NA not available, MFC minimum fungicidal concentration, MIC minimum inhibitory concentration, MIC₉₀ MIC at which 90 % of isolates are inhibited

^a Across individual studies reviewed in Ref. [15]

A 57 year-old Thai man with β-thalassemia disease was admitted (day 0) due to low grade fever and swelling Rt arm & forearm (deep and superficial soft tissue) with rapid progression lesions for -3 months.

History of planting in a swampy area before lesion occurred.

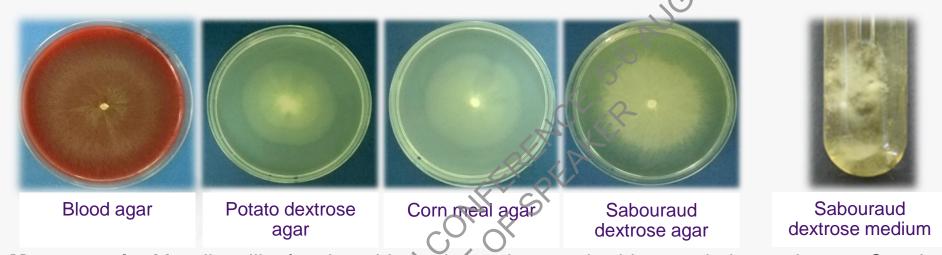
KOH & PAS & GMS : Non-septate hyphae

What?? and How should we do next

Yellow tissue covered with pus, measuring 6x11 cm.

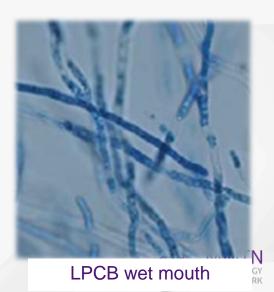
- CTA: Rt upper extremity: Occluded distal Rt. Brachial artery above the bifurcation.
- Pythium insidiosum antibody by ELISA: Pos
- Dx: Pythiosis
- Tx: Debridement + oral terbinafine & itraconazole + Immunotherapy

After 1st debridement (+6 days)


After 2nd debridement (+15 days)

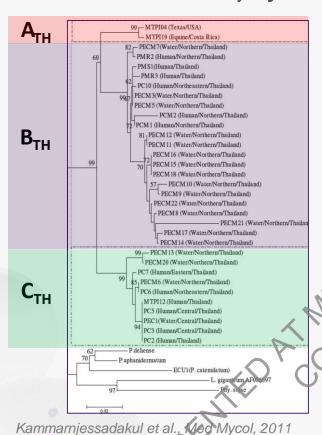
Before discharge (+24 days)

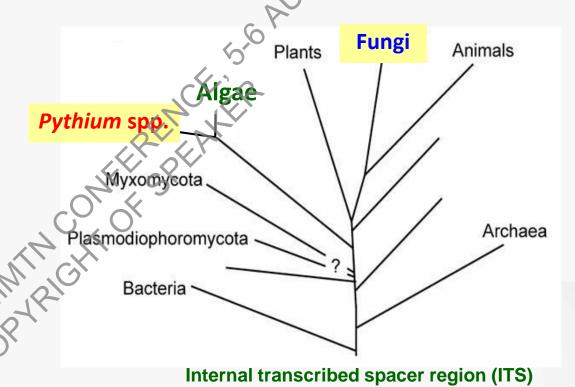
Human pythiosis: Pythium insidiosum (fungus-like organism)


Only one case reported in 2011 An American soldier acquired traumatic wound infection by *Pythium aphanidermatum* in Afghanistan (Farmer A et al. J clin Microbiol, 2011)

Macroscopic: Mycelium like fungi, rapid growing, submerged, white to colorless colony, 35C, 24h

Microscopic: Sparsely rare septate hyphae


Recent Taxonomy


Kingdom Straminipila Class Oomycetes Order Pythiales

Family **Pythiaceae**

Genus *Pythium*

Species insidiosum

Rossman et al., Pest Management, 2006

Phylogenetic tree of *R insiodiosum based on*

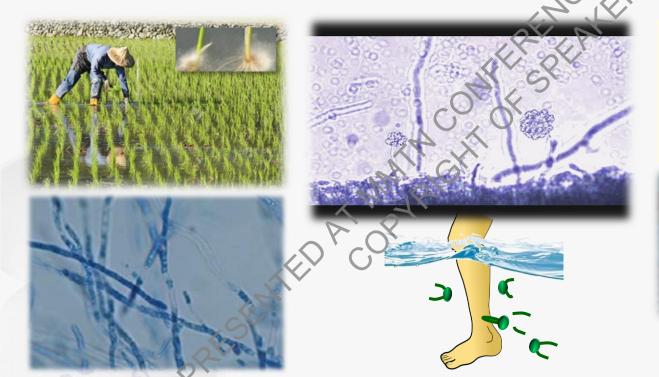
- ITS region (Schurko et al. Mycol Res, 2003)
- IGS region (Frank N et al. Mycologia, 2003)
- Cox 2 gene (Kammarnjessadakul et al., Med Mycol, 2011)
- Exo-1,3-beta glucanase (Ribeiro TC et al. Infection, Genetics and Evolution, 2017)

Recent Taxonomy & Epidemiology

Kingdom Straminipila Class Oomycetes Order Pythiales Species insidiosum Family **Pythiaceae** Genus *Pythium* A_{TH} 99 - MTPI04 (Texas/USA) MTPI19 (Equine/Costa Rica) 82 - PECM7(Water/Northern/Thailand) -PMR2 (Human/Northern/Thailand) - PMR3 (Human/Thailand) PC10 (Human/Northeastern/Thailand) PECM 3(Water/Northern/Thailand) PCM 2 (Human/Northern/Thailand CM1 (Human/Northern/Thailand) B_{TH} PECM 12 (Water/Northern/Thailand) PECM 11 (Water/Northern/Thailand) Asia PECM 16 (Water/Northern/Thailand) PECM 15 (Water/Northern/Thailand) PECM 18 (Water/Northern/Thailand) 57 PECM 10 (Water/Northern/Thailand) America PECM9 (Water/Northern/Thailand) PECM22 (Water/Northern/Thailand) **Africa** PECM 8 (Water/Northern/Thailand) - PECM 21 (Water/Northern/Thaila - PECM 17 (Water/Northern/Thailand) PECM 14 (Water/Northern/Thailand) South Clade C_{TH} **America** MTPI12 (Human/Thailand) PC5 (Human/Central/Thailand) PEC1(Water/Central/Thailand) PC3 (Human/Central/Thailand) PC2 (Human/Thailand) Clade B_{TH} Clade ATH -ECU1(P. catenulatum)

Kammarnjessadakul et al., Med Mycol, 2011

Phylogenetic tree of *R insiodiosum based on*


- ITS region (Schurko et al. Mycol Res, 2003)
- IGS region (Frank N et al. Mycologia, 2003)
- Cox 2 gene (Kammarnjessadakul et al., Med Mycol, 2011)
- Exo-1,3-beta glucanase (Ribeiro TC et al. Infection, Genetics and Evolution, 2017)

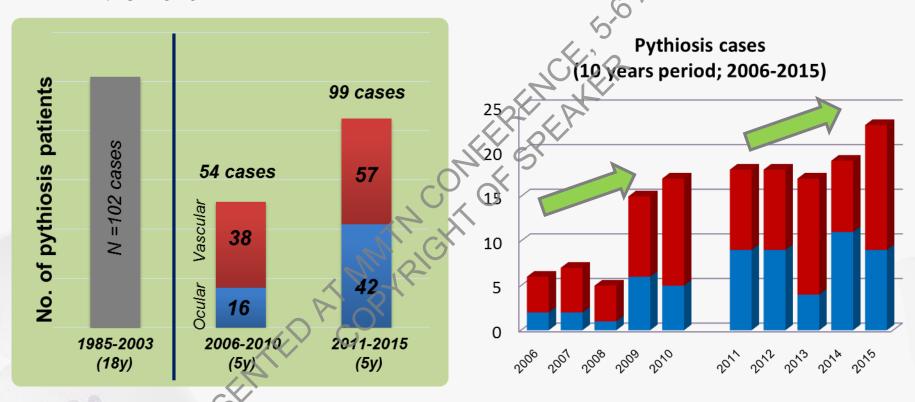
Schurko et al. Mycol Res, 2003.

Natural habitat

- Tropical & Sub tropical regions
- Moist soil / stagnant water ie. rice field
- Also has been isolated from irrigation water and reservoir in northern part of Thailand (Supabandhu, Med Mycol, 2008)

Infection is acquired through direct contact or trauma

Environmental form


Hyphae&zoospore form

Infected Stage **Zoospore form**

Infected Host Hyphae form

Human Pythiosis

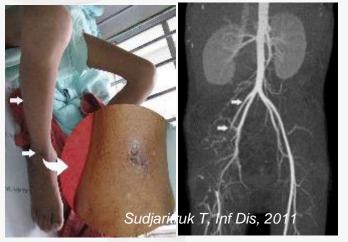
- Human pythiosis was first described in Thailand, in 1987.
- So far Thailand has been ranged as the highest incidence of human pythiosis in the world.

 Base on the immunotherapy requested from Mycology unit, KCMH, the increasing trend was presented.

Human Pythiosis

Pubmed Search (search on 2nd Aug 2017)

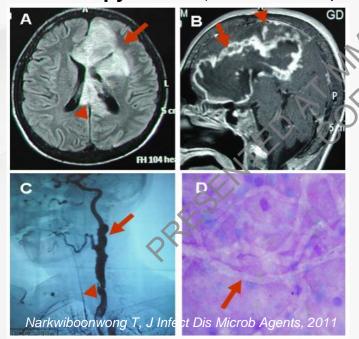
		Number of publications		
Keywords	Before 2006	2006-present (12 years approx.)	Total	
Human pythiosis	36	83	119	
Pythium in human	75	116	191	
Human pythiosis case report	10	22	32	
Human vascular pythiosis	R-6	14	20	
Human keratitis pythiosis	6	10	16	
Human ocular pythiosis	2	12	14	
Thai human pythiosis	3	9	12	


Human Pythiosis

 Not only in Thailand, some human pythiosis cases were also reported from other country around the world except Europe.

Regions	Country	Pythiosis Cases	Reference
Asia	Malaysia (Kuala Lumpur)	Pythium keratitis disposable contact lens wear, and swimming in the Kelang River	Badenoch et al., 2001
	India (Telangana)	13 Pythium keratitis cases during 2010-2012	Sharma S et al. 2015
	China (Hainan)	Pythium keratitis in a boy who was scraped by twigs while climbing a tree	Hong H et al. 2016
	Israel	Contact lens-related Pythium keratitis	Tanhehco TY et al. 2011
Australia	New Zealand (Auckland)	Keratitis pythiosis in a man who played ball in hot pool	D Murdoch et al. 1997
	Australia (Darwin)	Keratitis pythiosis in a child who swam in public and backyard swimming pools	Badenoch PR et al. 2009
	Australia	2 cutaneous pythiosis cases with the history of exposure to either swampy water or horses.	Triscott JA et al. 1993
America	Brazil	Subcutaneous pythiosis in a police after spend his vacation with water-associated leisure activities	Bosco M et al. 2005
	USA (Iowa, Florida, Texas)	5 Orbital pythiosis in young children	Mendoza L et al. 2004

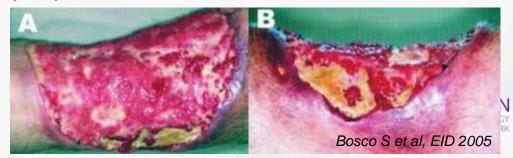
Clinical manifestations


Vascular pythiosis

Orbital and Facial Infection

Kirzhner M, J Ped Inf Dis, 2014

Cerebral pythiosis (cerebral hemisphere)



Keratitis pythiosis

(sub) Cutaneous form

Symptoms & Diagnosis and Treatment

	Vascular form	Ocular form
Symptoms	 Presents as granulomatous cutaneous and subcutaneous lesions Intermittent claudication Arterial obstruction / aneurysm resulting ischemia / gangrene Other signs of arterial insufficiency 	 pain and redness Less vision Ulcerative keratitis which may progress to endophthalmitis
Underlying Dis. & History	 Underlying hemoglobinopathy (thalassemia, PNH) Agriculture-related occupations ie. farmer or history of water exposure 	NoWater spilled
Diagnosis	 Arterial occlusion by angiogram P. insidiosum specific antibody (ID / ELISA / WB / Lateral flow / HA) P. insidiosum isolation & zoospore 	Positive for <i>P. insidiosum</i> isolation &
	 Molecular approach for identification both culture and specimens Histopathology 	 zoospore production Molecular approach for identification both culture and specimens Histopathology
Treatment	 AK amputation or debridement Antifungal agent: Itraconazole + Terbinafine Immunotherapy by PIA 	 Corneal grafting or enucleation Amphotericin B /terbinafine/Azoles Immunotherapy by PIA

Permpalung et al., J Antimicrob Chemother, 2015

J Antimic rob Chemother. 2015;70(6):1885-92. doi: 10.1093/jac/dkv008. Epub 2015 Jan 27.

Treatment outcomes of surgery, antifungal therapy and immunotherapy in ocular and vascular human pythiosis: a retrospective study of 18 patients.

Permpalung N¹, Worasilchai N², Plongla R³, Upala S⁴, Sanguankeo A⁴, Paitoonpong L³, Mendoza L⁵, Chindamporn A⁸.

Retrospective study in 18 pythiosis cases in KCMH from 2003 to 2013

Vascular pythiosis; n=9

- 44% of vascular cases died
- Definitive surgery with adequate surgical margins

Ocular pythiosis; n=9

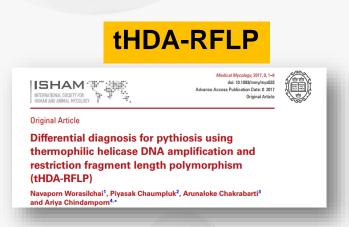
- 55% of ocular pythiosis underwent enucleation.
- Age might be one prognostic factor, significantly younger of non-enucleated cases than those who underwent enucleation.
- Higher non-enucleated cases (45%) was found in our center than others (12-21%), might have been due to the routine administration of PIA in our center.

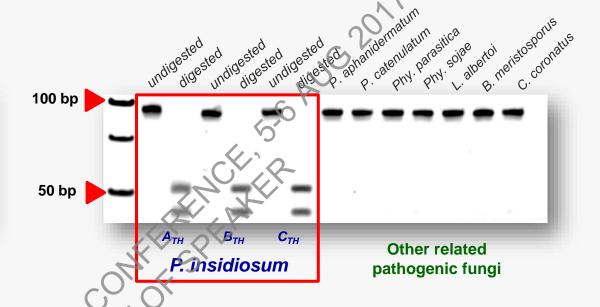
Int J Low Extrem Wounds, 2015 Sep;14(3):245-50. doi: 10.1177/1534734615599652. Epub 2015 Aug 18.

Vascular Pythiosis of the Lower Extremity in Northern Thailand: Ten Mears' Experience.

Reanpang T¹, Orrapin S¹, Orrapin S¹, Arworn S¹, Kattipatanapong T², Srisuwan T², Vanittanakom N³, Lekawanvijit SP⁴, Rerkasem K⁵.

Retrospective study in 22 vascular cases: 10-years period (2004-2014) in Maharaj Nakorn Chiang Mai, Chiang Mai University Hospital.


- Successful management of vascular pythiosis requires early recognition
- 4 classic clinical presentations need to be concerned:
 - (1) underlying thalassemia (3) history of previous leg wound
 - (2) no atherosclerotic risk (4) presentation with acute or chronic limb ischemia


Important to note that "serum antibody for *Pythium* should be tested in all suspected cases before treatment"

- Survival rate was around 63.6%.
- The only effective treatment was complete excision of the infected tissue, which was done mainly by major amputation.
- This report raises awareness of this disease, which needs preemptive diagnosis and appropriate treatment.

One more novel technology can help for pythiosis diagnosis

- Thermophillic helicase DNA Amplification (tHDA) using P. insidiosum specific primer
 - Isothermal DNA amplification, no need PCR machine
 - Rapid & accurate, species-specific identification
- Can differentiate P. insidiosum from closely related pathogenic fungi by CviKI-1 digestion.
- Limit of Detection
 - 100 pg (1.74 > 10² copies) for 1-step protocol
 - \circ 100 fg (1.74 × 10⁻¹ copies) for 2-step protocol
- Directly amplification in clinical samples was also evaluated.

...Take home messege...

Mucormycosis

- Underlying dis. in developed country: DM; developing country: HM
- Seems like a clear sky of treatment in future: 20d triazole
- From translational research of pathogenesis: CotH member -

Guideline for pythiosis diagnosis (Thai patients, experience)

Vascular pythiosis

- Underlying hemoglobinopathy ie. thalassemia, PNH etc.
- Agricultural related occupations ie. farmer or history of water exposure
- Present acute or chronic ischemia with rapid progression
- No atherosclerotic risk & no response to any antifungal agents

Ocular pythiosis

- History of water spilled to the eye
- Present ulcerative keratitis / endophthalmitis with rapid progression
- No response to any antifungal agents

