5th MMTN Conference 5-6 November 2016 Bangkok, Thailand 10:20-10:45, 6 Nov, 2016

Antifungal Resistance in Asia: Mechanisms, Epidemiology, and Consequences

Yee-Chun Chen, M.D., PhD.

Department of Medicine, National Taiwan University Hospital and College of Medicine; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taiwan

Disclosure

- Research grands: Pfizer, Gilead
- Advisory boards: Pfizer, MSD, Gilead
- Speaker: Pfizer, MSD, Gilead

Contents

- What is meant by resistance?
- Is antifungal resistance in *Candida* and other yeasts a problem in Asia?
- Is antifungal resistance in Aspergillus and other molds a problem in Asia?
- Limitation of current published data
- Conclusion

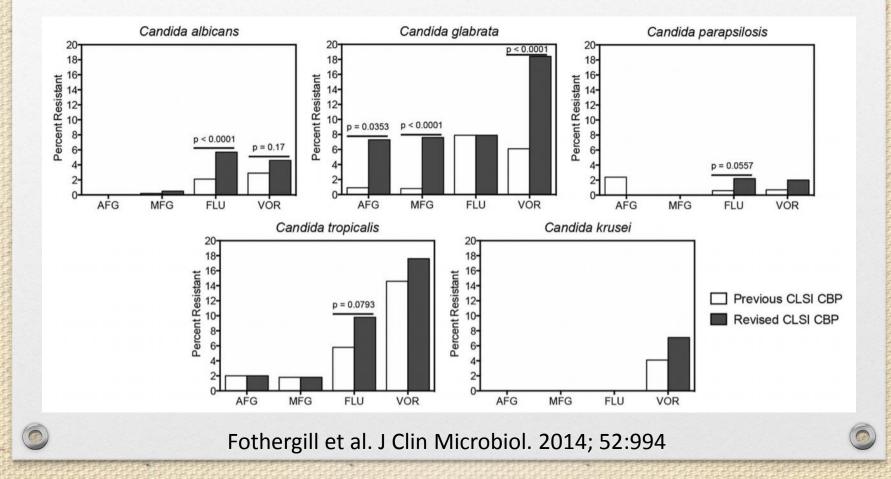
What is meant by resistance?

0

Clinical failure	failure of drug therapy to resolve signs and symptoms of infection
Microbiological failure	failure of therapy to eradicate the organism
In vitro definition	based an minimum inhibitory concentrations and clinical breakpoints

CLSI clinical breakpoints of antifungal resistance against *Candida* species

		C. albicans	C. glabrata	C. tropicalis	C. krusei	C. parapsilosis
Anidulafungin	Old	≥4	≥4	≥4	≥4	≥4
	New	≥1	≥0.5	≥1	≥1	≥8
Micafungin	Old	≥4	≥4	≥4	≥4	≥4
	New	≥1	≥0.25	≥1	≥1	≥8
Fluconazole	Old	≥64	≥64	≥64	≥64	≥64
	New	≥8	≥64	≥8	≥8	≥8
Voriconazole	Old	≥4	≥4	≥4	≥4	≥4
	New	≥1	≥1 *	≥1	≥2	≥1


*epidemiologic cutoff value

Clinical and Laboratory Standards Institute (CLSI) 2008, M27-A3; 2012. M27-S4.

Impact of New Antifungal Breakpoints on Antifungal Resistance in *Candida*

0

EUCAST Antifungal Clinical Breakpoint – Yeasts

0

v. 8.0 valid from 2015-11-16

14.4							М	IC break	point (mg	g/L)					
a margareta	Antifungal agent	C. albicans		C. glabrata		C. kr	rusei	C. paraj	osilosis	C. troj	oicalis	C. guillie	ermondii		pecies ated points ¹
all a		S≤	R >	S≤	R >	S≤	R >	S≤	R>	S≤	R >	S≤	R>	S≤	R>
a non a con	Amphotericin B	1	1	1	1	1	1	1	1	1	1	IE	IE	IE	IE
ALM THE PLANE	Anidulafungin	0.03	0.03	0.06	0.06	0.06	0.06	0.002	4	0.06	0.06	IE ²	IE ²	IE	IE
	Caspofungin	Note ³	IE ²	IE ²	IE	IE									
われたれたはい	Fluconazole	2	4	0.002	32	-	-	2	4	2	4	IE ²	IE ²	2	4
The Table Table Table	Isavuconazole	IE	IE	IE	IE	IE									
	Itraconazole	0.06	0.06	IE ²	IE ²	IE ²	IE ²	0.12	0.12	0.12	0.12	IE ²	IE ²	IE	IE
	Micafungin	0.016	0.016	0.03	0.03	IE⁴	ΙE ⁴	0.002	2	IE⁴	ΙE ⁴	IE⁴	IE⁴	IE	IE
ALL LEADER	Posaconazole	0.06	0.06	IE ²	IE ²	IE ²	IE ²	0.06	0.06	0.06	0.06	IE ²	IE ²	IE	IE
のないなないない	Voriconazole	0.12 ⁵	0.12 ⁵	IE	IE	IE	IE	0.12 ⁵	0.12 ⁵	0.12 ⁵	0.12 ⁵	IE ²	IE ²	IE	IE

EUCAST Antifungal Clinical Breakpoint - Molds

v. 8.0 valid from 2015-11-16

					MI	C breakp	oint (mg	/L)				
Antifungal agent	A. fla	avus	A. fumigatus		A. nid	ulans	A. n	iger	A. te	rreus	rela	pecies ited points ¹
	S≤	R >	S ≤	R>	S ≤	R >	S≤	R>	S ≤	R>	S≤	R>
Amphotericin B	IE ²	IE ²	1	2	Note ³	Note ³	1	2	-	-	IE	IE
Anidulafungin	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
Caspofungin	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
Fluconazole	-	-	-	-	-	-	-	-	-	-	-	-
Isavuconazole	IE ²	IE ²	1	1	0.25	0.25	IE ²	IE ²	1	1	IE	IE
ltraconazole ⁴	1	2	1	2	1	2	IE ^{2,5}	IE ^{2,5}	1	2	IE⁵	IE⁵
Micafungin	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
Posaconazole ⁴	IE ²	IE ²	0.12 ⁶	0.25 ⁶	IE ²	IE ²	IE ²	IE ²	0.12 ⁶	0.25 ⁶	IE	IE
Voriconazole ⁴	IE ²	IE ²	1	2	IE	IE	IE ²	IE ²	IE ²	IE ²	IE	IE

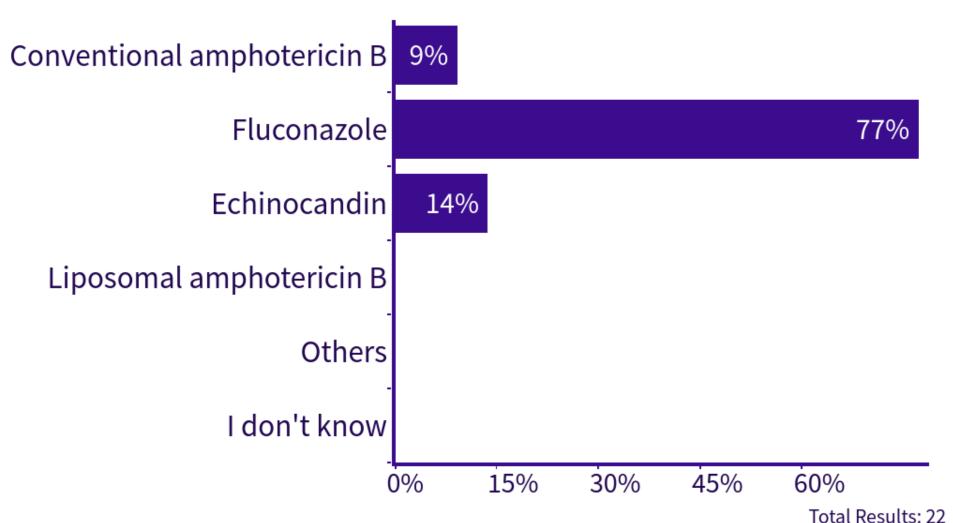
Is antifungal resistance in *Candida* and other yeasts a problem in Asia?

Get ready for voting...

Go to webpage: pollev.com/mmtn

Voting question on the next slide

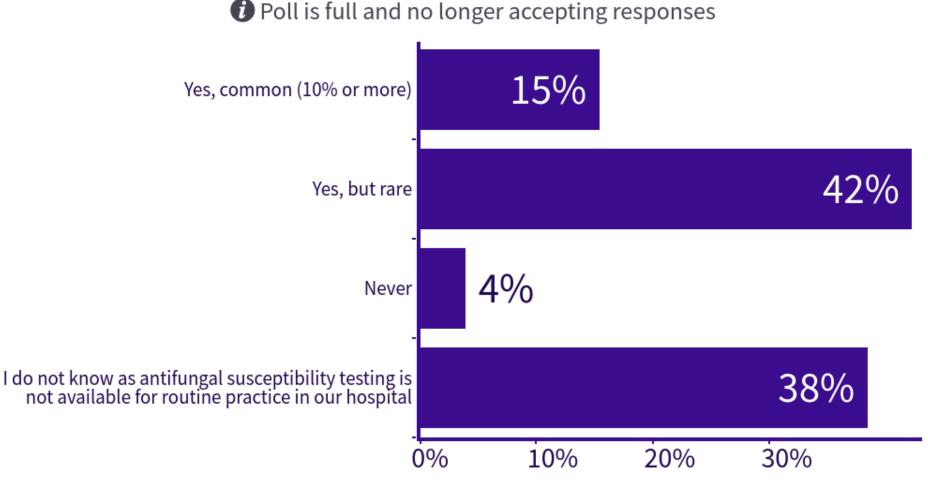
Wifi network: MMTN2016 Password: 2016mmtn


Q. Which is your most commonly used empirical antifungal agent for invasive candidiasis?

- A. Conventional amphotericin B
- B. Fluconazole
- C. Echinocandin
- D. Liposomal amphotericin B
- E. Others
- F. I don't know

Which is your most commonly used empirical antifungal agent for invasive candidiasis?

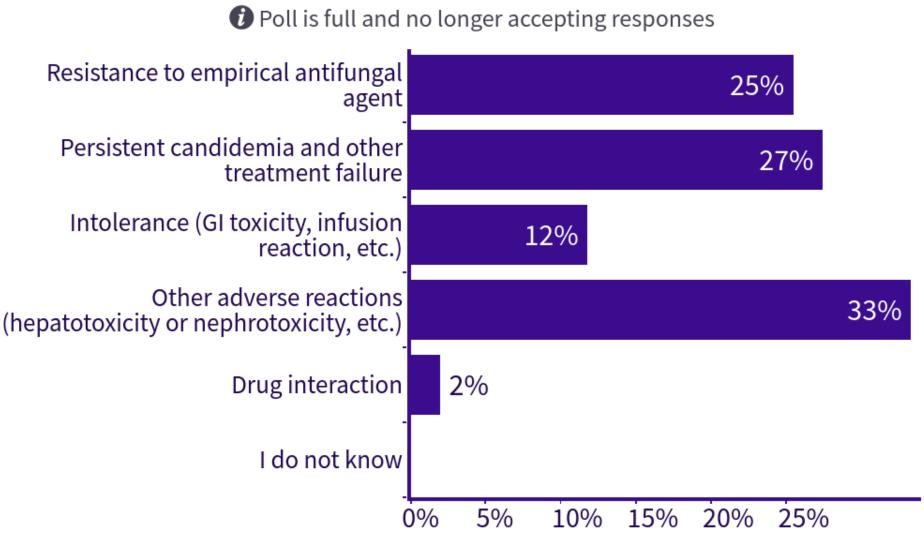
When poll is active, respond at **PollEv.com/mmtn**


Q. Does antifungal resistance compromise the use of current empirical antifungal agent for invasive candidiasis in your hospital?

- A. Yes, common (10% or more)
- B. Yes, but rare
- C. Never
- D. I do not know as antifungal susceptibility testing is not available for routine practice in our hospital

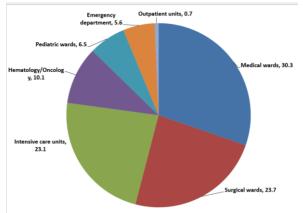
Does antifungal resistance compromise the use of current empirical antifungal agent for invasive candidiasis in your hospital?

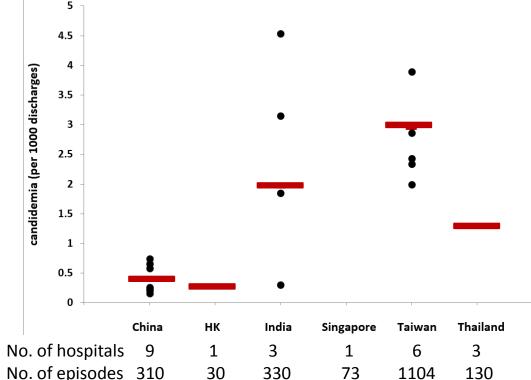
Poll Everywhere


Total Results: 26

Q. The most common two reasons of modification of therapeutic agents for invasive candidiasis? (Select two choices)

- A. Resistance to empirical antifungal agent
- B. Persistent candidemia and other treatment failure
- C. Intolerance (GI toxicity, infusion reaction, etc.)
- Other adverse reactions (hepatotoxicity or nephrotoxicity, etc.)
- E. Drug interaction
- F. I do not know


The most common two reasons of modification of therapeutic agents for invasive candidiasis? (Select two choices)



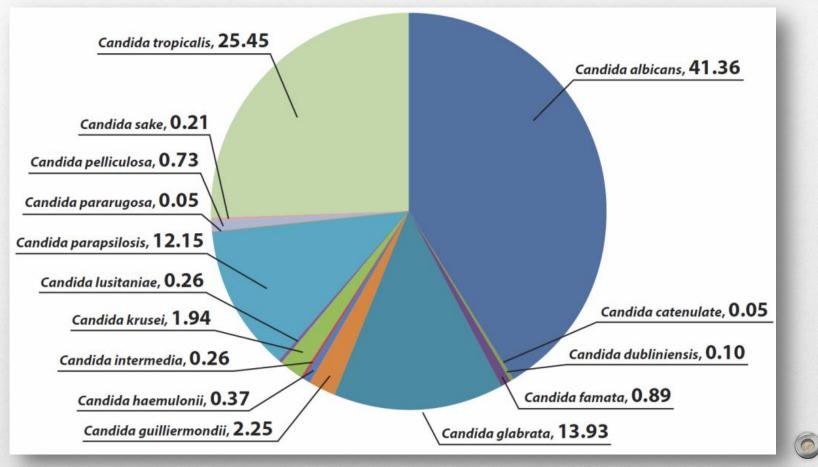
Incidence and species distribution of candidaemia in Asia: a laboratorybased surveillance study

B. H. Tan¹, A. Chakrabarti², R. Y. Li³, A. K. Patel⁴, S. P. Watcharananan⁵, Z. Liu⁶, A. Chindamporn⁷, A. L. Tan⁸, P.-L. Sun⁹, U.-I. Wu¹⁰ and Y.-C. Chen^{11,12}, on behalf of the Asia Fungal Working Group (AFWG)

1) Department of Infectious Diseases, Singapore General Hospital, Singapore, 2) Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India, 3) Department of Dermatology, Peking University First Hospital, Research Centre for Medical Mycology, Peking University, Beijing, China, 4) Department of Infectious Diseases, Sterling Hospital, Ahmedabad, India, 5) Division of Infectious Disease, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand, 6)Department of Infectious Diseases, Peking University, Beijing, China, 7) Department of Microbiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital Chulalongkorn University, Bangkok, Thailand, 8)Department of Pathology, Singapore General Hospital, Singapore, 9)Department of Dermatology, Mackay Memorial Hospital, 10)Department of Medical Research, National Taiwan University Hospital, 11)Department of Medicine, National Taiwan University Hospital and College of Medicine, Taipei and 12)National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan

- The overall incidence was 1.22 episodes per 1,000 discharges or 0.15 episodes/1000 patient-days
- Varied among the hospitals and countries.
- ICU: **11.7** per 1000 discharges
- There was a moderate correlation between incidence
 of candidemia and the ICU/total bed ratio (R²=0.47)

Clin Microbiol Infect 2015; 21: 946


Candida tropicalis was the leading nonalbicans species

 \bigcirc

0

0

Species distribution in Asia ,1910 non-duplicate blood Candida isolates

Clin Microbiol Infect 2015; 21: 946-953

Both geographic and healthcare contribute to the variation of species distribution of candidemia

- C. tropicalis was more likely to be isolated at neutropenic patients than others (39% vs 17%).¹
- *C. tropicalis* was more likely to be isolated at hematooncolgy wards than others (34.0% vs 24.5%).²
- The proportions of *C. tropicalis* among blood isolates were higher in tropical areas (India, Thailand and Singapore) than other geographical regions (46.2% versus 18.9%).²
 - 1. Hung et al. J Formos Med Assoc 1996;95:19
 - 2. Tan et al. Clin Microbiol Infect 2015; 21: 946

Candida bloodstream isolates, Asia-Pacific region

Species	Antifungal name	%I	%S	MIC50 (mg/l)	MIC90 (mg/l)
Candida albicans	Anidulafungin	0	100	0.016	0.064
	Caspofungin	0	100	0.064	0.064
	Fluconazole*	0	99.7	0.25	0.5
	Micafungin	0	100	0.008	0.016
	Voriconazole*	0	100	0.008	0.008
Candida tropicalis	Anidulafungin	0.4	99.2	0.032	0.125
	Caspofungin	0.4	99.6	0.064	0.125
	Fluconazole*	6.1	75.8	2	32
	Micafungin	0	100	0.032	0.032
	Voriconazole*	16.7	69.3	0.125	1
Candida parapsilosis	Anidulafungin	0	100	0.5	2
	Caspofungin	0	100	0.25	0.5
	Fluconazole*	3.0	94.8	0.5	2
	Micafungin	0.8	99.2	1	2
	Voriconazole*	0.8	99.2	0.008	0.032
Candida glabrata	Anidulafungin	0	99.1	0.032	0.064
	Caspofungin	5.2	93.1	0.125	0.125
	Fluconazole*	94.8	n/a	8	32
	Micafungin	1.7	98.3	0.016	0.016

 \bigcirc

861 isolates from 13 centers, 2014

Sensititre YeastOne YST-010, Thermofisher, United Kingdom

Tan TY, et al. Med Mycology 2016:54, 471

0

Candida bloodstream isolates, Asia-Pacific region

		Br	unei	Ko	orea	Philip	pines	Tai	wan	Tha	iland	Sing	apore	Viet	nam
Species	Antifungal name	%I	%S	%I	%S	%I	%S	%I	%S	%I	%S	%I	%S	%I	%S
Candida albicans	Anidulafungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Caspofungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Fluconazole*	0	100	0	97.4	0	100	0	100	0	100	0	100	0	100
	Micafungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Voriconazole*	0	100	0	100	0	100	0	100	0	100	0	100	0	100
Candida tropicalis	Anidulafungin	0	100	0	100	0	100	0	96.6	0	100	2.3	97.7	0	100
	Caspofungin	0	100	0	100	0	100	0	100	0	100	2.3	97.7	0	100
	Fluconazole*	14.3	85.7	0	100	0	100	6.9	82.8	9.5	70.3	6.8	72.7	3.3	61.7
	Micafungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Voriconazole*	7.1	92.9	0	100	3.8	96.2	13.8	82.8	16.2	64.9	25	63.6	25	46.7
Candida parapsilosis	Anidulafungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Caspofungin	0	100	0	100	0	100	0	100	0	100	0	100	0	100
	Fluconazole*	11.1	83.3	3.8	96.2	4.2	87.5	9.0	91.0	0	100	0	95	0	100
	Micafungin	5.6	94.4	0	100	0	100	0	100	0	100	0	100	0	100
	Voriconazole*	0	100	0	100	4.2	95.8	0	100	0	100	0	100	0	100
Candida glabrata	Anidulafungin	0	100	0	100	0	100	0	100	0	96.8	0	100	0	100
	Caspofungin	0	100	22.2	77.8	0	100	0	100	3.2	93.5	8.2	89.8	0	100
	Fluconazole*	80	n/a	100	n/a	100	n/a	100	n/a	93.5	n/a	93.9	n/a	100	n/a
	Micafungin	0	100	0	100	0	100	0	100	3.2	96.8	2	98	0	100

861 isolates from 13 centers, 2014 Tan TY, et al. Med Mycology 2016:54, 471

Invasive candidiasis in intensive care units in China the China-SCAN study

			MI	C (mg/L)					ECV (r	ng/L)
Species	Isolates, n (%)	Agent	range	50%	90%	Susceptible, n (%)	SDD, n (%)	Resistant, n (%)	WT	non-WT
Candida albicans	156 (40.1)	fluconazole voriconazole itraconazole caspofungin amphotericin B	0.06-64 0.03-0.5 0.06-4 0.03-0.25 0.25-1	1 0.03 0.06 0.06 0.5	4 0.03 1 0.125 0.5	134 (85.9) 145 (93.0) 6 (3.9) 156 (100.0)	7 (4.5) 11 (7.1) 125 (80.1) 0 (0.0)	15 (9.6) 0 (0.0) 25 (16.0) 0 (0.0)	156 (100.0)	0 (0.0)
Candida parapsilosis	83 (21.3)	fluconazole voriconazole itraconazole caspofungin amphotericin B	0.125-64 0.03-2 0.06-2 0.03-0.5 0.25-1	4 0.03 0.5 0.25 0.5	8 0.125 1 0.25 0.5	40 (48.2) 77 (92.8) 83 (100.0)	27 (32.5) 3 (3.6) 0 (0.0)	16 (19.3) 3 (3.6) 0 (0.0)	50 (60.2) 83 (100.0)	33 (39.8) 0 (0.0)
Candida tropicalis	67 (17.2)	fluconazole voriconazole itraconazole caspofungin amphotericin B	0.25-64 0.03-0.5 0.03-4 0.03-0.25 0.25-1	2 0.03 0.5 0.06 0.5	4 0.25 2 0.125 1	42 (62.7) 60 (89.6) 67 (100.0) 67 (100.0) ^a	21 (31.3) 7 (10.4) 0 (0.0)	4 (6.0) 0 (0.0) 0 (0.0) 0 (0.0) ^a	46 (68.7)	21 (31.3)
Candida glabrata	50 (12.9)	fluconazole voriconazole itraconazole caspofungin amphotericin B	0.5-64 0.03-2 0.5-4 0.03-0.25 0.03-1	4 0.06 1 0.125 0.5	32 0.125 2 0.25 0.5	0 (0.0) 0 (0.0) 43 (86.0) 50 (100.0)ª	48 (96.0) 7 (14.0)	2 (4.0) 0 (0.0) 0 (0.0) ^a	47 (94.0) 48 (96.0)	3 (6.0) 2 (4.0)
Candida haemulonii	15 (3.9)	fluconazole voriconazole itraconazole caspofungin amphotericin B	1-64 0.03-4 0.5-2 0.06-0.125 0.5-1	16 0.25 1 0.06 0.5	16 0.5 2 0.06 1	- - - -		- - - -		

67 ICUs

0

Liu W, et al. J Antimicrob Chemother 2014; 69: 162

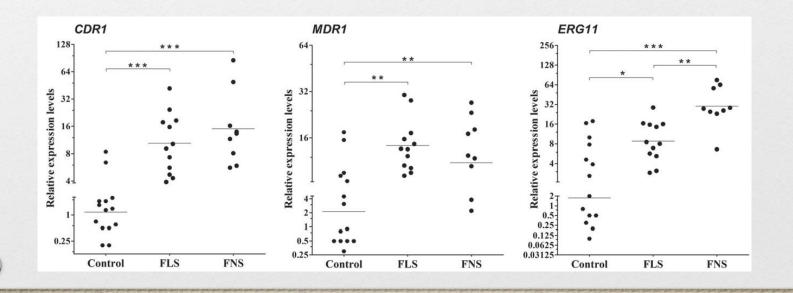
ICU-acquired candidemia in India

0

0

Antifungal	AFST	All species $(n = 918)$	C. tropicalis $(n = 382)$
Amphotericin B	$ \begin{array}{l} \text{MIC}_{50} \ (\mu\text{g/ml}) \\ \text{MIC}_{90} \ (\mu\text{g/ml}) \end{array} $	-	0.50 1.00
	Resistant (%)	2.1 %	4 (1.0) 0.25–1
Fluconazole	MIC percentile (25–75) MIC ₅₀ (µg/ml)		0.23-1
Theonazoie	MIC_{90} (µg/ml)	_	2.00
	Resistant (%)	6.2 %	10 (2.6)
	SDD (%)	11.0 %	9 (2.4)
	MIC percentile (25–75)		0.25-1
Itraconazole	MIC_{50} (µg/ml)	_	0.06
	MIC_{90} (µg/ml)	_	0.12
	Resistant (%)	1.2 %	1 (0.3)
	SDD (%)	9.3 %	27 (7.1)
	MIC percentile (25–75)		0.03-0.12
Posaconazole	MIC_{50} (µg/ml)	-	0.03
	MIC_{90} (µg/ml)	-	0.25
	MIC percentile (25–75)		0.03-0.12
Voriconazole	MIC_{50} (µg/ml)	-	0.12
	MIC_{90} (µg/ml)	5.6 %	0.50
	Resistant (%)	5.0 % 22.9 %	31(8.1)
	SDD (%) MIC percentile (25–75)	22.9 %	128 (33.5) 0.06–0.25
Anidulafungin	MIC percentile $(23-73)$ MIC ₅₀ (µg/ml)		0.08-0.23
Aniquiatungin	MIC_{50} (µg/ml)	_	0.05
	Resistant (%)	1.7 %	8 (2.1)
	Intermediate (%)	1.6 %	8 (2.1)
	MIC percentile (25–75)	1.0 %	0.03-0.06
Caspofungin	MIC_{50} (µg/ml)	_	0.25
ensperangin	MIC_{90} (µg/ml)	_	0.50
	Resistant (%)	5.6 %	16 (4.2)
	Intermediate (%)	10.1 %	50 (13.1)
	MIC percentile (25–75)		0.12-0.25
Micafungin	MIC_{50} (µg/ml)	-	0.03
	MIC_{90} (µg/ml)	-	0.12
	Resistant (%)	1.7 %	5 (1.3)
	Intermediate (%)	2.2 %	11 (2.9)
	MIC percentile (25–75)		0.03

27 Indian ICUs

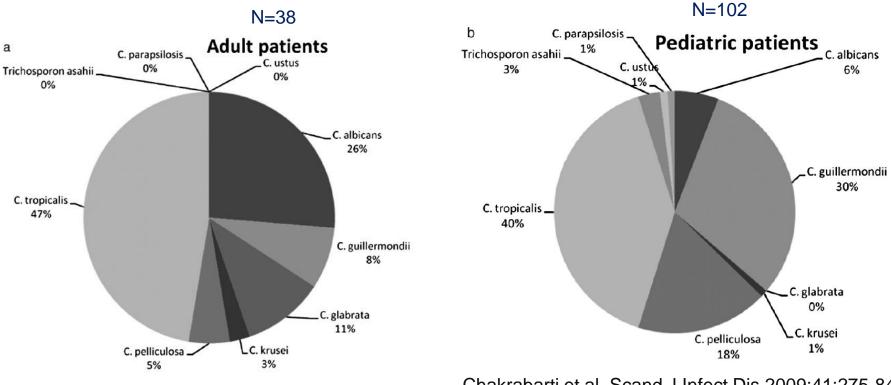

Arunaloke Chakrabarti et al. Intensive Care Med (2015) 41:285

C. tropicalis

- The time-to-positivity (TTP) of blood cultures of *C. tropicalis* was significantly shorter than that of other species¹
- Septic shock and skin emboli are common findings of candidemia²
- Both short TTP³ and septic shock are associated with poor prognosis.
- A survey in Taiwan found genetically related *C. tropicalis* exhibiting reduced susceptibility to fluconazole from the human hosts and environmental samples.⁴
 - 1. Lai et al.J Med Microbiol 2012;61:701
 - 2. Leung et al. J Hosp Infect 2002;50:316
 - 3. Kim et al. J Antimicrob Chemother 2013
 - 4. Yang et al. PLoS One 2012;7:e34609.

Fluconazole-nonsusceptible/lesssusceptible *C. tropicalis*

- FNS (MIC \ge 4 g/ml), isolates were identified more frequently from patients with previous azole exposure (6/6 versus 3/10; P = 0.011) and immunosuppression (6/6 versus 3/10; P = 0.011).
- FNS and FLS (1-2 g/ml), bloodstream isolates were associated with azole therapeutic failure (3/4 versus 4/7) or uncleared fungemia (4/6 versus 4/10)



Choi MJ, et al. Antimicrob. Agents Chemother 2016 60: 3653

C. pelliculosa

4-month prospective study in a tertiary care center, India, Sept-Dec 2007

- *C. pelliculosa*, also known as *Pichia anomala* or *Hansenula anomala*, is mainly found in plants, fruits and oil.
- Ten out of 14 episodes in this cohort were reported from a single hospital, clustered in the ICUs. Tan et al. Clin Microbiol Infect 2015;21:946
- In the preceding year, this hospital identified a monoclonal outbreak of *C. pelliculosa*.

J Microbiol Immunol Infect 2013;46:456

Chakrabarti et al. Scand J Infect Dis 2009;41:275-84

Pichia anomala (C. pelliculosa) outbreak in paediatric wards during 1996-1997.

Emerging opportunistic yeast infections

- Candida krusei¹
- Candida guilliermondii²
- Candida rugosa³
- Candida lusitaniae⁴
- Candida dubliniensis⁵
- Candida pelliculosa⁶
- Candida kefyr ^{6,7}
- Candida nivariensis ⁸
- Candida norvegensis
- Cryptococcus humicolus
- Cryptococcus uniguttulatus
- Geotrichum capitatum ⁹
- Hansenula
- Saccharomyces cerevisiae

- 1. Intrinsic resistance to fluconazole, susceptible to voriconazole
- 2. Potential for decreased susceptibility to polyenes, azoles, flucytosine, and the echinocandins
- 3. Cross resistance to fluconazole and voriconazole
- 4. Can develop secondary resistance to amphotericin B
- 5. Can develop stable fluconazole resistance, especially in patients with HIV/AIDS
- 6. Outbreak
- 7. Dairy products
- 8. Gardens or potted plants
- Presence of blastoconidia with hyphae differentiates *Trichosporon* from *Geotrichum*, predominantly in Italy.

0

Candida haemulonii and Closely Related Species, Korea

- A yeast species that often exhibits antifungal resistance (AmB, azole), rarely causes human infection
- Recovered from 8 patients with fungemia and 15 patients with chronic otitis media in 5 hospitals in Korea during 2004–2006.
- Species identification
 - Vitek 2 YST yeast card system: identified as *C. haemulonii*
 - API 20C system: identified as *Kodamaea ohmeri* and *Rhodotorula glutinis*
- Drug resistance were associated with therapeutic failure
- All susceptible to caspofungin and micafungin

One size not fit all

Activity of antifungal drugs against emerging yeasts

	Azoles		Polyenes	Echinocandins		
	Fluconazole	Voriconazole	Amphotericin formulations	Caspofungin		
Candida species						
Candida glabrata	Susceptible (dose dependent) to resistant	Susceptible (dose dependent) to resistant	Susceptible to intermediate susceptibility	Susceptible*		
Candida tropicalis	Susceptible	Susceptible	Susceptible	Susceptible*		
Candida parapsilosis	Susceptible	Susceptible	Susceptible	Susceptible to resistant		
Candida krusei	Resistant	Susceptible (dose dependent) to resistant	Susceptible to intermediate susceptibility	Susceptible		
Candida k <i>e</i> fyr	Susceptible	Susceptible	Susceptible	Susceptible		
Candida lusitaniae	Susceptible	Susceptible	Susceptible to resistant	Susceptible*		
Candida dubliniensis	Susceptible to resistant	Susceptible	Susceptible	Susceptible		
Candida rugosa	Very low activity	Low activity	Susceptible	Susceptible		
Candida guilliermondii	Low activity	Susceptible	Susceptible	Susceptible		
Trichosporon species			(
Trichosporon asahii	Low activity	Susceptible	Resistant	Resistant		
Trichosporon beigelii (cutaneum)	Low activity	Low activity	Resistant	Resistant		
Rhodotorula species	Very low activity	Variable susceptibility/ very low activity	Susceptible	Resistant		
Non-neoformans cryptococcus spe	cies					
Overall	Low activity	Susceptible	Susceptible	NA		
Cryptococcus laurentii	Very low activity	NA	Susceptible*	Resistant		
Other uncommon yeasts						
Geotrichum species	Variable susceptibility	Susceptible	Susceptible	NA		
Hansenu la anomala	Fluconazole: low activity; itraconazole: very low activity	Susceptible	Susceptible	Susceptible		
Malassezia species	Fluconazole: low activity; itraconazole: susceptible	Susceptible	Variable susceptibility	NA		
Saccharomyces species	Low activity/variable susceptibility	Susceptible	Susceptible	NA		

Resistant was defined as less than 40% of isolates tested reported as active. Susceptible was defined as more than 90% of isolates tested reported as active. Low activity was defined as 60–89% of isolates tested reported as active. Very low activity was defined as 40–59% of isolates tested reported as active. NA=data not available. *Susceptible but resistance reported after exposure (ie, breakthrough infections).

Lancet Infect Dis 2011;11: 142

29

Comparative In vitro Activities of Various Antifungal Drugs against *Candida* and *Cryptococcus* Singapore General Hospital, 2004-2006

Fungal isolates	No.	PO	OS	FI	LU	VC	OR	AM	B	CA	S
		MIC ₅₀	MIC ₉₀								
All Candida sp.	100	0.064	1.5	0.38	16	0.032	0.38	0.38	0.75	0.094	0.25
C. albicans	24	0.032	0.064	0.125	0.19	0.006	0.008	0.094	0.125	0.032	0.125
C. tropicalis	28	0.094	0.125	0.38	0.75	0.047	0.094	0.5	1	0.094	0.19
C. glabrata	27	1	2	16	48	0.25	0.5	0.5	0.75	0.094	0.19
C. parapsilosis	12	0.023	0.047	0.38	0.75	0.012	0.023	0.125	0.5	0.25	1
C. dubliniensis	7	0.012	0.023	0.094	0.25	0.004	0.006	0.012	0.032	0.125	0.125
C. krusei	1	0.25	0.25	24	24	0.19	0.19	0.5	0.5	0.25	0.25
C. famata	1	0.006	0.006	0.094	0.094	0.003	0.003	0.016	0.016	0.19	0.19
Cryptococcus sp.	10	0.125	0.38	8	32	0.023	0.094	0.25	0.25	>32	>32
C. neoformans	8	0.125	0.38	4	32	0.016	0.094	0.25	0.38	>32	>32
C. gattii	2	0.19	0.5	8	32	0.064	0.125	0.25	0.25	>32	>32

Etest, MIC in μg/mL Tan AL et al. Ann Acad Med Singapore 2008;37:841

Antifungal Susceptibility of 216 cryptococcal clinical isolates in Taiwan, 1997–2010

0

Antifungal agent	Genotype	No. of isolates	Minimum in	hibitory concen	tration (μg	/mL)		% (No.) abo	ove ECV
			Range	Geometric Mean	MIC ₅₀	MIC ₉₀	ECV	This study	Global studies ^a
Amphotericin B									
	VNI	203	0.03-1	0.48	0.5	0.5	0.5	3.4% (7)	2.8%
	VNII	4	0.13–1	0.42	0.5	1	NA ^a		
	VGI	3	0.25-0.25	0.25	0.25	0.25	0.5	0%	0.8%
	VGII	6	0.06-1	0.31	0.5	1	1	0%	0.8%
Flucytosine									
	VNI	203	0.13-32	1.14	1	2	8	0.5% (1)	3.4%
	VNII	4	0.13–2	0.30	0.19	2	NA ^a		
	VGI	3	0.5–1	0.63	0.5	1	4	0%	4.3%
	VGII	6	1–2	1.59	2	2	16	0%	2.9%
Fluconazole									
	VNI	203	0.03-16	2.35	4	8	8	0.5% (1)	2.9%
	VNII	4	0.13-8	0.84	0.75	8	NA ^a		
	VGI	3	1–4	2	2	4	8	0%	1.2%
	VGII	6	0.13–16	5.04	8	16	32	0%	6.9%
Voriconazole									
	VNI	203	0.03-0.25	0.06	0.06	0.13	0.25	0%	2.4%
	VNII	4	0.03-0.13	0.05	0.05	0.13	NA ^a		
	VGI	3	0.03-0.06	0.04	0.03	0.06	0.5	0%	0%
	VGII	6	0.13-0.25	0.20	0.25	0.25	0.25	0%	4.1%

Tseng et al. Plos One 2013;8(4): e61921.

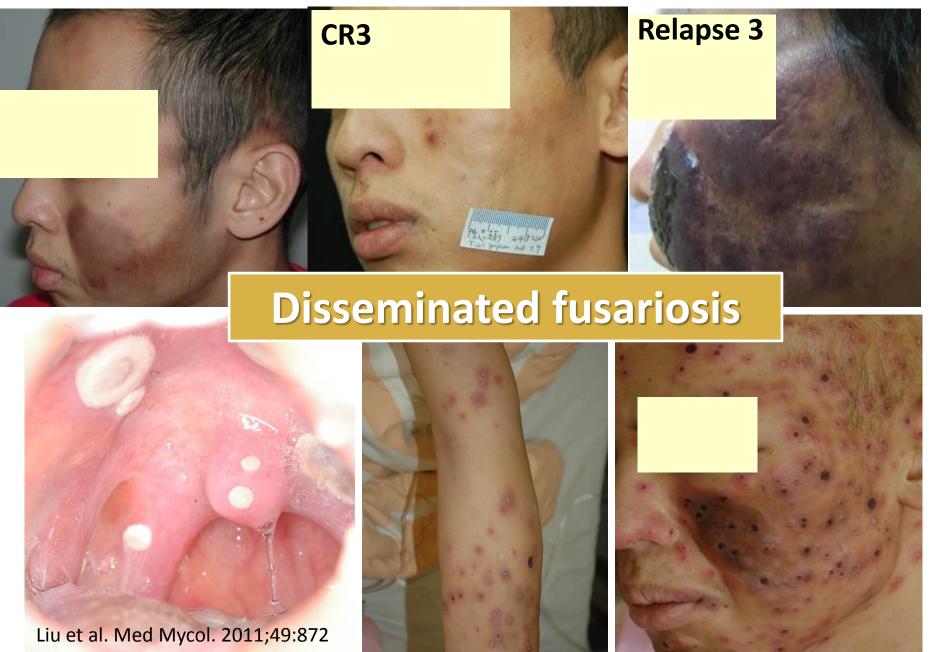
Is antifungal resistance in Aspergillus and other molds a problem in Asia?

Comparative In vitro Activities of Various Antifungal Drugs against Moulds

Fungal isolates	No.	Р	OS	IT	R	V	OR	AMB		CAS	
		MIC ₅₀	MIC ₉₀								
All moulds	50	0.047	>32	0.19	>32	0.094	4	0.25	3	0.016	>32
Aspergillus sp.	34	0.023	0.125	0.094	0.25	0.064	0.19	0.125	2	0.008	0.047
A. fumigatus	12	0.032	0.047	0.094	0.19	0.094	0.125	0.19	0.25	0.003	0.047
A. niger	12	0.012	0.032	0.064	0.19	0.032	0.064	0.125	0.19	0.012	0.064
A. flavus	7	0.094	0.19	0.19	0.25	0.125	0.19	2	4	0.008	0.023
A. clavatus/A. nidulans	3	0.016	1	0.25	0.38	0.094	0.25	0.032	0.38	0.016	0.032
Fusarium solani	10	>32	>32	>32	>32	2	4	3	4	>32	>32
Others	6	0.38	>32	1	>32	6	64	0.25	>32	>32	>32

Etest, MIC in μg/mL Tan AL et al. Ann Acad Med Singapore 2008;37:841

Invasive infections caused by moulds other than Aspergillus


A tertiary care Characteristic Fusarium Paecilomyces Zygomycetes Scedosporium hospital in Taiwan, 2000-2008 Number (%) of 12 (44.4) 7 (25.9) 5 (18.5) 3(||.|)patients Age, median (range) 65.4 (48-78) 39.5 (0-79) 60 (9-82) 37 (23-81) 103 patients with Male 6 (50) 4 (57) 3 (60) 3 (75) cultures positive Diagnosis Acute leukaemia 5 2 for non-Aspergillus Lymphoma 0 0 0 moulds MDS 0 0 Solid tumour 0 The overall AIDS 2 0 0 Diabetes mellitus 2 0 mortality rate was HSCT 0 0 40.7%, and was Solid organ 0 transplant highest in cases Immunological risk factors zygomycosis. Steroid use 2 Neutropenia 2 2 0 < 500/µL Hsiue HC et al. Clin Microbiol 2 Lymphopenia 7 2 0

 $< 1500/\mu L$

Infect. 2010;16:1204

.

Cutaneous T cell lymphoma with acute leukemic change

Recommendations for treatment of *Fusarium* infection in immunocompromised patients

Population	Intention	SoR	QoE	Comment
Immunocompromised	First-line treatment			
patients	Voriconazole	A	llt,r	Therapeutic drug monitoring required Response rate was associated with underlying condition and infection site
	Liposomal amphotericin B	B	llt,r	Fungi may be resistant to amphotericin B
	Amphotericin B lipid complex	С	III	Limited case reports
	Amphotericin B deoxycholate	D	llt,u	Fungi often resistant to amphotericin B Breakthrough infections may occur Excessive toxicity
	Any echinocandin	D	III	Intrinsically resistant
	Any combination therapy	С	Ш	Limited reports Combination not better than voriconazole alone
	Salvage treatment			
	Posaconazole	A	Ш	Overall success rate 50% Breakthrough infections Therapeutic drug monitoring required
	Voriconazole	A	III	Substantial efficacy Therapeutic drug monitoring required

QoE, quality of evidence; SoR, strength of recommendation.

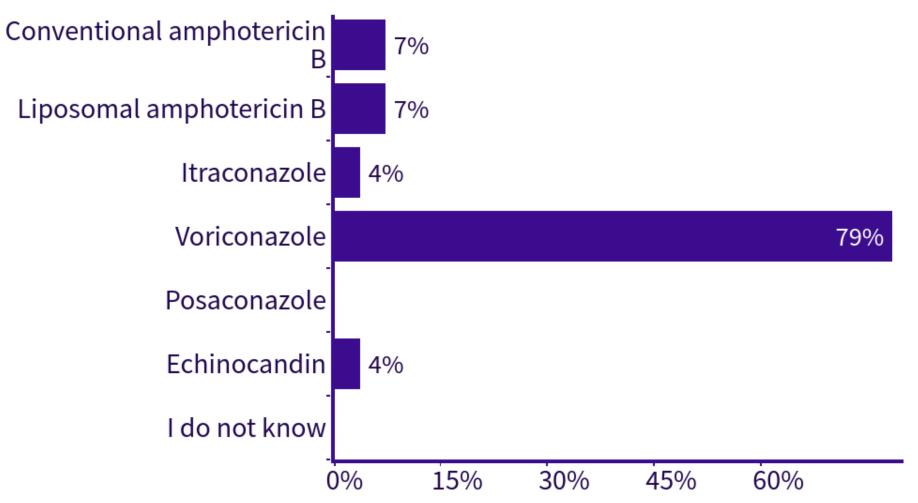
Clin Microbiol Infect 2014;20(Suppl. 3):27-46

Get ready for voting...

Go to webpage: pollev.com/mmtn

Voting question on the next slide

Wifi network: MMTN2016 Password: 2016mmtn


Q. Which is your most commonly used antifungal agent for invasive aspergillosis?

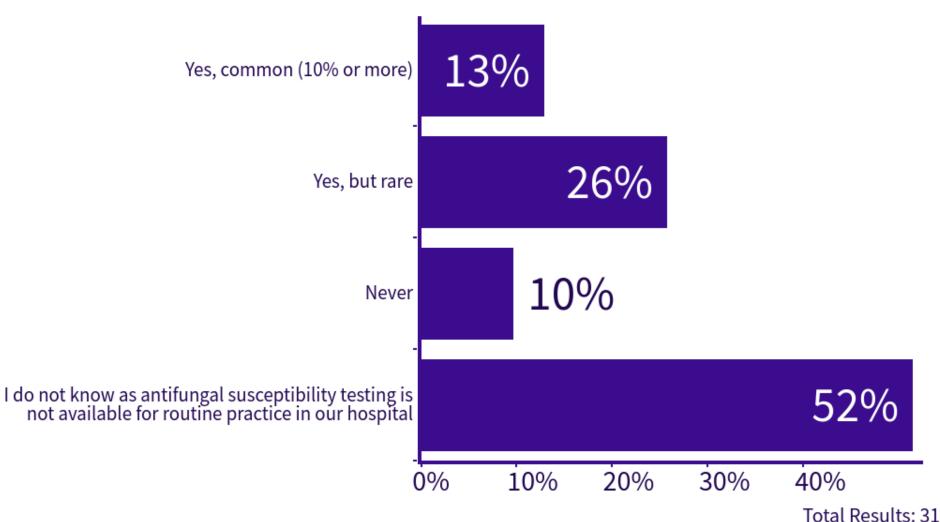
- A. Conventional amphotericin B
- B. Liposomal amphotericin B
- C. Itraconazole
- D. Voriconazole
- E. Posaconazole
- F. Echinocandin
- G. I do not know

Which is your most commonly used antifungal agent for invasive aspergillosis?

Poll is full and no longer accepting responses

Total Results: 28

Q. Does antifungal resistance compromise the use of current antifungal agent for invasive aspergillosis in your hospital?


- A. Yes, common (10% or more)
- B. Yes, but rare
- C. Never
- D. I do not know as antifungal susceptibility testing is not available for routine practice in our hospital

Does antifungal resistance compromise the use of current antifungal agent for invasive aspergillosis in your hospital?

Poll is full and no longer accepting responses

Poll Everywhere

Mutations in the cyp51A gene and MICs of azole antifungals in 6 *A. fumigatus* isolates isolated from a patient with lung aspergilloma

			MIC (mg/L)			
Itraconazole	Isolate	Mutation in <i>cyp51A</i>	itraconazole	voriconazole		
No	AF1	_	0.25	0.25		
Yes 6M	AF2	M220I	>16	1		
No 2M	AF3	_	0.5	0.5		
Yes	AF4	G54R	>16	0.5		
Yes	AF5	G54R	>16	0.5		
Yes	AF6	G54R	>16	0.5		

Chen et al. JAC 2005;55:31

Recovery of TR34/L98H and TR46/Y121F/T289A Resistance Mechanisms in *Aspergillus fumigatus*

TR ₃₄ /L98H				TR ₄₆ /Y121F/T289A				
Country	First Case	Type of Isolate	Year of Publication [Reference]	Country	First Case	Type of Isolate	Year of Publication [Reference]	
Netherlands	1998	C + E	2008 [13]	United States	2008	С	2015 [<mark>25</mark>]	
Italy	1998	C + E	2015 [<mark>23</mark>]	Netherlands	2009	C + E	2013 [24]	
Turkey	2000	С	2015 [<mark>26</mark>]	Belgium	2012	C + E	2012 [12, 27]	
Spain	2003	С	2013 [12, 28]	Germany	2012	C + E	2015 [12, 15]	
Australia	2004	С	2015 [29]	India	2012	E	2014 [30]	
Iran	2005	C + E	2013 [12, 30]	France	2013	C + E	2015 [31]	
Belgium	2006	C + E	2012 [12, 27]	Tanzania	2013	E	2014 [32]	
Denmark	2007	C + E	2010/2011 [12, 33]	Denmark	2014	С	2015 [33]	
China	2008–2009	С	2011 [30, 34]	Spain	2014	С	2015 [28]	
India	2008	C + E	2012 [12, 30]	Colombia	2015	E	2015 [35]	
United Kingdom	2009–2011	C + E	2009 [1 <mark>2</mark> , <mark>36</mark>]					
France	2010	C + E	2012 [12]					
United States	2010	С	2015 [25]					
Germany	2012	C + E	2012 [12, 15]					
Taiwan	2011	С	2015 [37]					
Kuwait	2013	C + E	2015 [30, 38]					
Poland	2006-2014	С	2015 [<mark>39</mark>]					
Colombia	2015	Е	2015 <mark>[35</mark>]					

Abbreviations: C, clinical; E, environmental.

0

^a Due to space restriction, we were not able to include all individual publications. We have cited reviews, which included reports from individual countries over the years.

Verweij PE et al. CID 2016;62:362

Azole-resistant Aspergillus fumigatus isolates carrying TR₃₄/L98H mutations, Taiwan

0

The prevalence rates of azole resistance

• global 3–6%

Taiwan 6.5%

Patient, sex/age(y)	Isolate	Sample type	Underlying diseases	Minimum inhibitory concentrations, mg/L					
				ITZ	VCZ	POS	AMB	TBZ	PEN
Azole-resistant isolate, n=3		two azole-	-naïve pa	tients					
1, M/59	A31	BAL	Lung cancer	≥16 (≥16 ^b)	4 (4 ^b)	1 (0.5 ^b)	0.5	32	>32
2, F/66	B44	sputum	chronic hepatitis C, cirrhosis of	>16 (>16 ^b)	2 (1 ^b)	1 (0.5 ^b)	0.5	16	>32
	B51	sputum	liver, diabetes without control and adrenal insufficiency	>16 (>16 ^b)	2 (1 ^b)	1 (0.5 ^b)	0.5	16	>32
Azole-sus	Azole-susceptible isolates, n=35			0.06/0.12 [0.03-0.25] b,c	0.25/0.5 [0.12-1] b,c	0.03/0.06 [0.015-0.06] b,c	-	1/2 [0.5-4] ^c	2/2 [0.5-4] ^c

Wu CJ et al. Mycoses, 2015;58: 544

Environmental Multiple-Triazole-Resistant A. fumigatus Strains Carrying the TR34/L98H Mutations in the cyp51A Gene in India

- A total of 44 (7%) *A. fumigatus* isolates from 24 environmental samples were triazole resistant.
- Cross-resistance to voriconazole, posaconazole, itraconazole and to six triazole fungicides used extensively in agriculture.
- In contrast to the genetic uniformity of azole-resistant strains the azole-susceptible isolates from patients and environments in India were genetically very diverse.
- All Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype

0

Chowdhary A, et al. PLoS ONE 2012;7: e52871.

The possible mechanisms or sources of antifungal resistant fungal pathogens

- 1. De novo occurrence of mutation in causality pathogens following the use of antifungal agents
- 2. Selection of drug resistant fungal pathogens following the use of antifungal agents
- Cross transmission of antifungal resistant fungal pathogens from other patients or environment in the healthcare settings
- 4. Acquisition of antifungal resistant fungal pathogens from the agricultural environment

Limitation of current published data

Definition

Clinical breakpoints

Detection

- Identification to species levels
- In vitro susceptibility testing in routine laboratories

Publication

Conclusions

- Antifungal resistance has emerged and spread in Asia.
- Antifungal susceptibility vary by fungal pathogens and by region/country/hospital
- Population surveillance data to guide local practice (empirical therapy)
- Detection of fungal pathogen and identification to species level to guide definitive therapy
- Evaluate in vitro susceptibility of individual isolate for selected fungi and/or patients

